1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
//! Minor conveniences on top of the backtrace crate
//!
//! See [`short_frames_strict`][] for details.
use backtrace::*;
use std::ops::Range;

#[cfg(test)]
mod test;

/// Gets an iterator over the frames that are part of Rust's "short backtrace" range.
/// If no such range is found, the full stack is yielded.
///
/// Rust generally tries to include special frames on the stack called `rust_end_short_backtrace`
/// and `rust_begin_short_backtrace` which delimit the "real" stackframes from "gunk" stackframes
/// like setting up main and invoking the panic runtime. This yields all the "real" frames between
/// those two (which theoretically can be nothing with enough optimization, although that's unlikely
/// for any non-trivial program).
///
/// If only one of the special frames is present we will only clamp one side of the stack
/// (similar to `a..` or `..a`). If the special frames are in the wrong order we will discard
/// them and produce the full stack. If multiple versions of a special frame are found
/// (I've seen it in the wild), we will pick the "innermost" ones, producing the smallest
/// possible backtrace (and excluding all special frames from the output).
///
/// Each element of the iterator includes a Range which you should use to slice
/// the frame's `symbols()` array. This handles the theoretical situation where "real" frames
/// got inlined together with the special marker frames. I want to believe this can't happen
/// but you can never trust backtraces to be reasonable! We will never yield a Frame to you
/// with an empty Range.
///
/// Note that some "gunk" frames may still be found within the short backtrace, as there is still some
/// platform-specific and optimization-specific glue around the edges because compilers are
/// complicated and nothing's perfect. This can include:
///
/// * `core::ops::function::FnOnce::call_once`
/// * `std::panicking::begin_panic_handler`
/// * `core::panicking::panic_fmt`
/// * `rust_begin_unwind`
///
/// In the future we may introduce a non-strict short_frames which heuristically filters
/// those frames out too. Until then, the strict approach is safe.
///
/// # Example
///
/// Here's an example simple "short backtrace" implementation.
/// Note the use of `sub_frames` for the inner loop to restrict `symbols`!
///
/// This example is based off of code found in `miette` (Apache-2.0), which itself
/// copied the logic from `human-panic` (MIT/Apache-2.0).
///
/// FIXME: it would be nice if this example consulted `RUST_BACKTRACE=full`,
/// and maybe other vars used by rust's builtin panic handler..?
///
/// ```
/// fn backtrace() -> String {
///     use std::fmt::Write;
///     if let Ok(var) = std::env::var("RUST_BACKTRACE") {
///         if !var.is_empty() && var != "0" {
///             const HEX_WIDTH: usize = std::mem::size_of::<usize>() + 2;
///             // Padding for next lines after frame's address
///             const NEXT_SYMBOL_PADDING: usize = HEX_WIDTH + 6;
///             let mut backtrace = String::new();
///             let trace = backtrace::Backtrace::new();
///             let frames = backtrace_ext::short_frames_strict(&trace).enumerate();
///             for (idx, (frame, subframes)) in frames {
///                 let ip = frame.ip();
///                 let _ = write!(backtrace, "\n{:4}: {:2$?}", idx, ip, HEX_WIDTH);
///     
///                 let symbols = frame.symbols();
///                 if symbols.is_empty() {
///                     let _ = write!(backtrace, " - <unresolved>");
///                     continue;
///                 }
///     
///                 for (idx, symbol) in symbols[subframes].iter().enumerate() {
///                     // Print symbols from this address,
///                     // if there are several addresses
///                     // we need to put it on next line
///                     if idx != 0 {
///                         let _ = write!(backtrace, "\n{:1$}", "", NEXT_SYMBOL_PADDING);
///                     }
///     
///                     if let Some(name) = symbol.name() {
///                         let _ = write!(backtrace, " - {}", name);
///                     } else {
///                         let _ = write!(backtrace, " - <unknown>");
///                     }
///     
///                     // See if there is debug information with file name and line
///                     if let (Some(file), Some(line)) = (symbol.filename(), symbol.lineno()) {
///                         let _ = write!(
///                             backtrace,
///                             "\n{:3$}at {}:{}",
///                             "",
///                             file.display(),
///                             line,
///                             NEXT_SYMBOL_PADDING
///                         );
///                     }
///                 }
///             }
///             return backtrace;
///         }
///     }
///     "".into()
/// }
/// ```
pub fn short_frames_strict(
    backtrace: &Backtrace,
) -> impl Iterator<Item = (&BacktraceFrame, Range<usize>)> {
    short_frames_strict_impl(backtrace)
}

pub(crate) fn short_frames_strict_impl<B: Backtraceish>(
    backtrace: &B,
) -> impl Iterator<Item = (&B::Frame, Range<usize>)> {
    // Search for the special frames
    let mut short_start = None;
    let mut short_end = None;
    let frames = backtrace.frames();
    for (frame_idx, frame) in frames.iter().enumerate() {
        let symbols = frame.symbols();
        for (subframe_idx, frame) in symbols.iter().enumerate() {
            if let Some(name) = frame.name_str() {
                // Yes these ARE backwards, and that's intentional! We want to print the frames from
                // "newest to oldest" (show what panicked first), and that's the order that Backtrace
                // gives us, but these magic labels view the stack in the opposite order. So we just
                // swap it once here and forget about that weirdness.
                //
                // Note that due to platform/optimization wobblyness you can end up with multiple frames
                // that contain these names in sequence. If that happens we just want to pick the two
                // that are closest together. For the start that means just using the last one we found,
                // and for the end that means taking the first one we find.
                if name.contains("rust_end_short_backtrace") {
                    short_start = Some((frame_idx, subframe_idx));
                }
                if name.contains("rust_begin_short_backtrace") && short_end.is_none() {
                    short_end = Some((frame_idx, subframe_idx));
                }
            }
        }
    }

    // Check if these are in the right order, if they aren't, discard them
    // This also handles the mega-cursed case of "someone made a symbol with both names
    // so actually they're the exact same subframe".
    if let (Some(start), Some(end)) = (short_start, short_end) {
        if start >= end {
            short_start = None;
            short_end = None;
        }
    }

    // By default we want to produce a full stack trace and now we'll try to clamp it.
    let mut first_frame = 0usize;
    let mut first_subframe = 0usize;
    // NOTE: this is INCLUSIVE
    let mut last_frame = frames.len().saturating_sub(1);
    // NOTE: this is EXCLUSIVE
    let mut last_subframe_excl = backtrace
        .frames()
        .last()
        .map(|frame| frame.symbols().len())
        .unwrap_or(0);

    // This code tries to be really paranoid about boundary conditions although in practice
    // most of them are impossible because there's always going to be gunk on either side
    // of the short backtrace to smooth out the boundaries, and panic_fmt is basically
    // impossible to optimize out. Still, don't trust backtracers!!!
    //
    // This library has a fuckton of tests to try to catch all the little corner cases here.

    // If we found the start bound...
    if let Some((idx, sub_idx)) = short_start {
        if frames[idx].symbols().len() == sub_idx + 1 {
            // If it was the last subframe of this frame, we want to just
            // use the whole next frame! It's ok if this takes us to `first_frame = len`,
            // that will be properly handled as an empty output
            first_frame = idx + 1;
            first_subframe = 0;
        } else {
            // Otherwise use this frame, and all the subframes after it
            first_frame = idx;
            first_subframe = sub_idx + 1;
        }
    }

    // If we found the end bound...
    if let Some((idx, sub_idx)) = short_end {
        if sub_idx == 0 {
            // If it was the first subframe of this frame, we want to just
            // use the whole previous frame!
            if idx == 0 {
                // If we were *also* on the first frame, set subframe_excl
                // to 0, indicating an empty output
                last_frame = 0;
                last_subframe_excl = 0;
            } else {
                last_frame = idx - 1;
                last_subframe_excl = frames[last_frame].symbols().len();
            }
        } else {
            // Otherwise use this frame (no need subframe math, exclusive bound!)
            last_frame = idx;
            last_subframe_excl = sub_idx;
        }
    }

    // If the two subframes managed to perfectly line up with eachother, just
    // throw everything out and yield an empty range. We don't need to fix any
    // other values at this point as they won't be used for anything with an
    // empty iterator
    let final_frames = {
        let start = (first_frame, first_subframe);
        let end = (last_frame, last_subframe_excl);
        if start == end {
            &frames[0..0]
        } else {
            &frames[first_frame..=last_frame]
        }
    };

    // Get the index of the last frame when starting from the first frame
    let adjusted_last_frame = last_frame.saturating_sub(first_frame);

    // finally do the iteration
    final_frames.iter().enumerate().map(move |(idx, frame)| {
        // Default to all subframes being yielded
        let mut sub_start = 0;
        let mut sub_end_excl = frame.symbols().len();
        // If we're on first frame, apply its subframe clamp
        if idx == 0 {
            sub_start = first_subframe;
        }
        // If we're on the last frame, apply its subframe clamp
        if idx == adjusted_last_frame {
            sub_end_excl = last_subframe_excl;
        }
        (frame, sub_start..sub_end_excl)
    })
}

pub(crate) trait Backtraceish {
    type Frame: Frameish;
    fn frames(&self) -> &[Self::Frame];
}

pub(crate) trait Frameish {
    type Symbol: Symbolish;
    fn symbols(&self) -> &[Self::Symbol];
}

pub(crate) trait Symbolish {
    fn name_str(&self) -> Option<&str>;
}

impl Backtraceish for Backtrace {
    type Frame = BacktraceFrame;
    fn frames(&self) -> &[Self::Frame] {
        self.frames()
    }
}

impl Frameish for BacktraceFrame {
    type Symbol = BacktraceSymbol;
    fn symbols(&self) -> &[Self::Symbol] {
        self.symbols()
    }
}

impl Symbolish for BacktraceSymbol {
    // We need to shortcut SymbolName here because
    // HRTB isn't in our msrv
    fn name_str(&self) -> Option<&str> {
        self.name().and_then(|n| n.as_str())
    }
}