1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
#![no_std]
#![warn(missing_docs)]
#![allow(clippy::match_like_matches_macro)]
#![allow(clippy::uninlined_format_args)]
#![allow(clippy::result_unit_err)]
#![allow(clippy::type_complexity)]
#![cfg_attr(feature = "nightly_docs", feature(doc_cfg))]
#![cfg_attr(feature = "nightly_portable_simd", feature(portable_simd))]
#![cfg_attr(feature = "nightly_float", feature(f16, f128))]
#![cfg_attr(
all(
feature = "nightly_stdsimd",
any(target_arch = "x86_64", target_arch = "x86")
),
feature(stdarch_x86_avx512)
)]
//! This crate gives small utilities for casting between plain data types.
//!
//! ## Basics
//!
//! Data comes in five basic forms in Rust, so we have five basic casting
//! functions:
//!
//! * `T` uses [`cast`]
//! * `&T` uses [`cast_ref`]
//! * `&mut T` uses [`cast_mut`]
//! * `&[T]` uses [`cast_slice`]
//! * `&mut [T]` uses [`cast_slice_mut`]
//!
//! Depending on the function, the [`NoUninit`] and/or [`AnyBitPattern`] traits
//! are used to maintain memory safety.
//!
//! **Historical Note:** When the crate first started the [`Pod`] trait was used
//! instead, and so you may hear people refer to that, but it has the strongest
//! requirements and people eventually wanted the more fine-grained system, so
//! here we are. All types that impl `Pod` have a blanket impl to also support
//! `NoUninit` and `AnyBitPattern`. The traits unfortunately do not have a
//! perfectly clean hierarchy for semver reasons.
//!
//! ## Failures
//!
//! Some casts will never fail, and other casts might fail.
//!
//! * `cast::<u32, f32>` always works (and [`f32::from_bits`]).
//! * `cast_ref::<[u8; 4], u32>` might fail if the specific array reference
//! given at runtime doesn't have alignment 4.
//!
//! In addition to the "normal" forms of each function, which will panic on
//! invalid input, there's also `try_` versions which will return a `Result`.
//!
//! If you would like to statically ensure that a cast will work at runtime you
//! can use the `must_cast` crate feature and the `must_` casting functions. A
//! "must cast" that can't be statically known to be valid will cause a
//! compilation error (and sometimes a very hard to read compilation error).
//!
//! ## Using Your Own Types
//!
//! All the functions listed above are guarded by the [`Pod`] trait, which is a
//! sub-trait of the [`Zeroable`] trait.
//!
//! If you enable the crate's `derive` feature then these traits can be derived
//! on your own types. The derive macros will perform the necessary checks on
//! your type declaration, and trigger an error if your type does not qualify.
//!
//! The derive macros might not cover all edge cases, and sometimes they will
//! error when actually everything is fine. As a last resort you can impl these
//! traits manually. However, these traits are `unsafe`, and you should
//! carefully read the requirements before using a manual implementation.
//!
//! ## Cargo Features
//!
//! The crate supports Rust 1.34 when no features are enabled, and so there's
//! cargo features for thing that you might consider "obvious".
//!
//! The cargo features **do not** promise any particular MSRV, and they may
//! increase their MSRV in new versions.
//!
//! * `derive`: Provide derive macros for the various traits.
//! * `extern_crate_alloc`: Provide utilities for `alloc` related types such as
//! Box and Vec.
//! * `zeroable_maybe_uninit` and `zeroable_atomics`: Provide more [`Zeroable`]
//! impls.
//! * `wasm_simd` and `aarch64_simd`: Support more SIMD types.
//! * `min_const_generics`: Provides appropriate impls for arrays of all lengths
//! instead of just for a select list of array lengths.
//! * `must_cast`: Provides the `must_` functions, which will compile error if
//! the requested cast can't be statically verified.
//! * `const_zeroed`: Provides a const version of the `zeroed` function.
#[cfg(all(target_arch = "aarch64", feature = "aarch64_simd"))]
use core::arch::aarch64;
#[cfg(all(target_arch = "wasm32", feature = "wasm_simd"))]
use core::arch::wasm32;
#[cfg(target_arch = "x86")]
use core::arch::x86;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64;
//
use core::{
marker::*,
mem::{align_of, size_of},
num::*,
ptr::*,
};
// Used from macros to ensure we aren't using some locally defined name and
// actually are referencing libcore. This also would allow pre-2018 edition
// crates to use our macros, but I'm not sure how important that is.
#[doc(hidden)]
pub use ::core as __core;
#[cfg(not(feature = "min_const_generics"))]
macro_rules! impl_unsafe_marker_for_array {
( $marker:ident , $( $n:expr ),* ) => {
$(unsafe impl<T> $marker for [T; $n] where T: $marker {})*
}
}
/// A macro to transmute between two types without requiring knowing size
/// statically.
macro_rules! transmute {
($val:expr) => {
::core::mem::transmute_copy(&::core::mem::ManuallyDrop::new($val))
};
}
/// A macro to implement marker traits for various simd types.
/// #[allow(unused)] because the impls are only compiled on relevant platforms
/// with relevant cargo features enabled.
#[allow(unused)]
macro_rules! impl_unsafe_marker_for_simd {
($(#[cfg($cfg_predicate:meta)])? unsafe impl $trait:ident for $platform:ident :: {}) => {};
($(#[cfg($cfg_predicate:meta)])? unsafe impl $trait:ident for $platform:ident :: { $first_type:ident $(, $types:ident)* $(,)? }) => {
$( #[cfg($cfg_predicate)] )?
$( #[cfg_attr(feature = "nightly_docs", doc(cfg($cfg_predicate)))] )?
unsafe impl $trait for $platform::$first_type {}
$( #[cfg($cfg_predicate)] )? // To prevent recursion errors if nothing is going to be expanded anyway.
impl_unsafe_marker_for_simd!($( #[cfg($cfg_predicate)] )? unsafe impl $trait for $platform::{ $( $types ),* });
};
}
#[cfg(feature = "extern_crate_std")]
extern crate std;
#[cfg(feature = "extern_crate_alloc")]
extern crate alloc;
#[cfg(feature = "extern_crate_alloc")]
#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "extern_crate_alloc")))]
pub mod allocation;
#[cfg(feature = "extern_crate_alloc")]
pub use allocation::*;
mod anybitpattern;
pub use anybitpattern::*;
pub mod checked;
pub use checked::CheckedBitPattern;
mod internal;
mod zeroable;
pub use zeroable::*;
mod zeroable_in_option;
pub use zeroable_in_option::*;
mod pod;
pub use pod::*;
mod pod_in_option;
pub use pod_in_option::*;
#[cfg(feature = "must_cast")]
mod must;
#[cfg(feature = "must_cast")]
#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "must_cast")))]
pub use must::*;
mod no_uninit;
pub use no_uninit::*;
mod contiguous;
pub use contiguous::*;
mod offset_of;
// ^ no import, the module only has a macro_rules, which are cursed and don't
// follow normal import/export rules.
mod transparent;
pub use transparent::*;
#[cfg(feature = "derive")]
#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "derive")))]
pub use bytemuck_derive::{
AnyBitPattern, ByteEq, ByteHash, CheckedBitPattern, Contiguous, NoUninit,
Pod, TransparentWrapper, Zeroable,
};
/// The things that can go wrong when casting between [`Pod`] data forms.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum PodCastError {
/// You tried to cast a reference into a reference to a type with a higher alignment
/// requirement but the input reference wasn't aligned.
TargetAlignmentGreaterAndInputNotAligned,
/// If the element size of a slice changes, then the output slice changes length
/// accordingly. If the output slice wouldn't be a whole number of elements,
/// then the conversion fails.
OutputSliceWouldHaveSlop,
/// When casting an individual `T`, `&T`, or `&mut T` value the
/// source size and destination size must be an exact match.
SizeMismatch,
/// For this type of cast the alignments must be exactly the same and they
/// were not so now you're sad.
///
/// This error is generated **only** by operations that cast allocated types
/// (such as `Box` and `Vec`), because in that case the alignment must stay
/// exact.
AlignmentMismatch,
}
#[cfg(not(target_arch = "spirv"))]
impl core::fmt::Display for PodCastError {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "{:?}", self)
}
}
#[cfg(feature = "extern_crate_std")]
#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "extern_crate_std")))]
impl std::error::Error for PodCastError {}
/// Re-interprets `&T` as `&[u8]`.
///
/// Any ZST becomes an empty slice, and in that case the pointer value of that
/// empty slice might not match the pointer value of the input reference.
#[inline]
pub fn bytes_of<T: NoUninit>(t: &T) -> &[u8] {
unsafe { internal::bytes_of(t) }
}
/// Re-interprets `&mut T` as `&mut [u8]`.
///
/// Any ZST becomes an empty slice, and in that case the pointer value of that
/// empty slice might not match the pointer value of the input reference.
#[inline]
pub fn bytes_of_mut<T: NoUninit + AnyBitPattern>(t: &mut T) -> &mut [u8] {
unsafe { internal::bytes_of_mut(t) }
}
/// Re-interprets `&[u8]` as `&T`.
///
/// ## Panics
///
/// This is like [`try_from_bytes`] but will panic on error.
#[inline]
pub fn from_bytes<T: AnyBitPattern>(s: &[u8]) -> &T {
unsafe { internal::from_bytes(s) }
}
/// Re-interprets `&mut [u8]` as `&mut T`.
///
/// ## Panics
///
/// This is like [`try_from_bytes_mut`] but will panic on error.
#[inline]
pub fn from_bytes_mut<T: NoUninit + AnyBitPattern>(s: &mut [u8]) -> &mut T {
unsafe { internal::from_bytes_mut(s) }
}
/// Reads from the bytes as if they were a `T`.
///
/// Unlike [`from_bytes`], the slice doesn't need to respect alignment of `T`,
/// only sizes must match.
///
/// ## Failure
/// * If the `bytes` length is not equal to `size_of::<T>()`.
#[inline]
pub fn try_pod_read_unaligned<T: AnyBitPattern>(
bytes: &[u8],
) -> Result<T, PodCastError> {
unsafe { internal::try_pod_read_unaligned(bytes) }
}
/// Reads the slice into a `T` value.
///
/// Unlike [`from_bytes`], the slice doesn't need to respect alignment of `T`,
/// only sizes must match.
///
/// ## Panics
/// * This is like `try_pod_read_unaligned` but will panic on failure.
#[inline]
pub fn pod_read_unaligned<T: AnyBitPattern>(bytes: &[u8]) -> T {
unsafe { internal::pod_read_unaligned(bytes) }
}
/// Re-interprets `&[u8]` as `&T`.
///
/// ## Failure
///
/// * If the slice isn't aligned for the new type
/// * If the slice's length isn’t exactly the size of the new type
#[inline]
pub fn try_from_bytes<T: AnyBitPattern>(s: &[u8]) -> Result<&T, PodCastError> {
unsafe { internal::try_from_bytes(s) }
}
/// Re-interprets `&mut [u8]` as `&mut T`.
///
/// ## Failure
///
/// * If the slice isn't aligned for the new type
/// * If the slice's length isn’t exactly the size of the new type
#[inline]
pub fn try_from_bytes_mut<T: NoUninit + AnyBitPattern>(
s: &mut [u8],
) -> Result<&mut T, PodCastError> {
unsafe { internal::try_from_bytes_mut(s) }
}
/// Cast `T` into `U`
///
/// ## Panics
///
/// * This is like [`try_cast`], but will panic on a size mismatch.
#[inline]
pub fn cast<A: NoUninit, B: AnyBitPattern>(a: A) -> B {
unsafe { internal::cast(a) }
}
/// Cast `&mut T` into `&mut U`.
///
/// ## Panics
///
/// This is [`try_cast_mut`] but will panic on error.
#[inline]
pub fn cast_mut<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>(
a: &mut A,
) -> &mut B {
unsafe { internal::cast_mut(a) }
}
/// Cast `&T` into `&U`.
///
/// ## Panics
///
/// This is [`try_cast_ref`] but will panic on error.
#[inline]
pub fn cast_ref<A: NoUninit, B: AnyBitPattern>(a: &A) -> &B {
unsafe { internal::cast_ref(a) }
}
/// Cast `&[A]` into `&[B]`.
///
/// ## Panics
///
/// This is [`try_cast_slice`] but will panic on error.
#[inline]
pub fn cast_slice<A: NoUninit, B: AnyBitPattern>(a: &[A]) -> &[B] {
unsafe { internal::cast_slice(a) }
}
/// Cast `&mut [T]` into `&mut [U]`.
///
/// ## Panics
///
/// This is [`try_cast_slice_mut`] but will panic on error.
#[inline]
pub fn cast_slice_mut<
A: NoUninit + AnyBitPattern,
B: NoUninit + AnyBitPattern,
>(
a: &mut [A],
) -> &mut [B] {
unsafe { internal::cast_slice_mut(a) }
}
/// As [`align_to`](https://doc.rust-lang.org/std/primitive.slice.html#method.align_to),
/// but safe because of the [`Pod`] bound.
#[inline]
pub fn pod_align_to<T: NoUninit, U: AnyBitPattern>(
vals: &[T],
) -> (&[T], &[U], &[T]) {
unsafe { vals.align_to::<U>() }
}
/// As [`align_to_mut`](https://doc.rust-lang.org/std/primitive.slice.html#method.align_to_mut),
/// but safe because of the [`Pod`] bound.
#[inline]
pub fn pod_align_to_mut<
T: NoUninit + AnyBitPattern,
U: NoUninit + AnyBitPattern,
>(
vals: &mut [T],
) -> (&mut [T], &mut [U], &mut [T]) {
unsafe { vals.align_to_mut::<U>() }
}
/// Try to cast `T` into `U`.
///
/// Note that for this particular type of cast, alignment isn't a factor. The
/// input value is semantically copied into the function and then returned to a
/// new memory location which will have whatever the required alignment of the
/// output type is.
///
/// ## Failure
///
/// * If the types don't have the same size this fails.
#[inline]
pub fn try_cast<A: NoUninit, B: AnyBitPattern>(
a: A,
) -> Result<B, PodCastError> {
unsafe { internal::try_cast(a) }
}
/// Try to convert a `&T` into `&U`.
///
/// ## Failure
///
/// * If the reference isn't aligned in the new type
/// * If the source type and target type aren't the same size.
#[inline]
pub fn try_cast_ref<A: NoUninit, B: AnyBitPattern>(
a: &A,
) -> Result<&B, PodCastError> {
unsafe { internal::try_cast_ref(a) }
}
/// Try to convert a `&mut T` into `&mut U`.
///
/// As [`try_cast_ref`], but `mut`.
#[inline]
pub fn try_cast_mut<
A: NoUninit + AnyBitPattern,
B: NoUninit + AnyBitPattern,
>(
a: &mut A,
) -> Result<&mut B, PodCastError> {
unsafe { internal::try_cast_mut(a) }
}
/// Try to convert `&[A]` into `&[B]` (possibly with a change in length).
///
/// * `input.as_ptr() as usize == output.as_ptr() as usize`
/// * `input.len() * size_of::<A>() == output.len() * size_of::<B>()`
///
/// ## Failure
///
/// * If the target type has a greater alignment requirement and the input slice
/// isn't aligned.
/// * If the target element type is a different size from the current element
/// type, and the output slice wouldn't be a whole number of elements when
/// accounting for the size change (eg: 3 `u16` values is 1.5 `u32` values, so
/// that's a failure).
/// * Similarly, you can't convert between a [ZST](https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts)
/// and a non-ZST.
#[inline]
pub fn try_cast_slice<A: NoUninit, B: AnyBitPattern>(
a: &[A],
) -> Result<&[B], PodCastError> {
unsafe { internal::try_cast_slice(a) }
}
/// Try to convert `&mut [A]` into `&mut [B]` (possibly with a change in
/// length).
///
/// As [`try_cast_slice`], but `&mut`.
#[inline]
pub fn try_cast_slice_mut<
A: NoUninit + AnyBitPattern,
B: NoUninit + AnyBitPattern,
>(
a: &mut [A],
) -> Result<&mut [B], PodCastError> {
unsafe { internal::try_cast_slice_mut(a) }
}
/// Fill all bytes of `target` with zeroes (see [`Zeroable`]).
///
/// This is similar to `*target = Zeroable::zeroed()`, but guarantees that any
/// padding bytes in `target` are zeroed as well.
///
/// See also [`fill_zeroes`], if you have a slice rather than a single value.
#[inline]
pub fn write_zeroes<T: Zeroable>(target: &mut T) {
struct EnsureZeroWrite<T>(*mut T);
impl<T> Drop for EnsureZeroWrite<T> {
#[inline(always)]
fn drop(&mut self) {
unsafe {
core::ptr::write_bytes(self.0, 0u8, 1);
}
}
}
unsafe {
let guard = EnsureZeroWrite(target);
core::ptr::drop_in_place(guard.0);
drop(guard);
}
}
/// Fill all bytes of `slice` with zeroes (see [`Zeroable`]).
///
/// This is similar to `slice.fill(Zeroable::zeroed())`, but guarantees that any
/// padding bytes in `slice` are zeroed as well.
///
/// See also [`write_zeroes`], which zeroes all bytes of a single value rather
/// than a slice.
#[inline]
pub fn fill_zeroes<T: Zeroable>(slice: &mut [T]) {
if core::mem::needs_drop::<T>() {
// If `T` needs to be dropped then we have to do this one item at a time, in
// case one of the intermediate drops does a panic.
slice.iter_mut().for_each(write_zeroes);
} else {
// Otherwise we can be really fast and just fill everthing with zeros.
let len = core::mem::size_of_val::<[T]>(slice);
unsafe { core::ptr::write_bytes(slice.as_mut_ptr() as *mut u8, 0u8, len) }
}
}
/// Same as [`Zeroable::zeroed`], but as a `const fn` const.
#[cfg(feature = "const_zeroed")]
#[inline]
#[must_use]
pub const fn zeroed<T: Zeroable>() -> T {
unsafe { core::mem::zeroed() }
}