#[cfg(all(not(feature = "std"), feature = "alloc"))]
use alloc::string::String;
use core::cell::{Cell, RefCell};
use core::char;
use core::cmp;
use core::fmt::Debug;
use core::iter::FromIterator;
use core::u32;
use io;
use io::prelude::*;
use io::{Error, ErrorKind, SeekFrom};
use byteorder::LittleEndian;
use byteorder_ext::{ReadBytesExt, WriteBytesExt};
use boot_sector::{format_boot_sector, BiosParameterBlock, BootSector};
use dir::{Dir, DirRawStream};
use dir_entry::{DirFileEntryData, FileAttributes};
use file::File;
use table::{alloc_cluster, count_free_clusters, format_fat, read_fat_flags, ClusterIterator, RESERVED_FAT_ENTRIES};
use time::{TimeProvider, DEFAULT_TIME_PROVIDER};
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum FatType {
Fat12,
Fat16,
Fat32,
}
impl FatType {
const FAT16_MIN_CLUSTERS: u32 = 4085;
const FAT32_MIN_CLUSTERS: u32 = 65525;
const FAT32_MAX_CLUSTERS: u32 = 0x0FFF_FFF4;
pub(crate) fn from_clusters(total_clusters: u32) -> FatType {
if total_clusters < Self::FAT16_MIN_CLUSTERS {
FatType::Fat12
} else if total_clusters < Self::FAT32_MIN_CLUSTERS {
FatType::Fat16
} else {
FatType::Fat32
}
}
pub(crate) fn bits_per_fat_entry(&self) -> u32 {
match self {
&FatType::Fat12 => 12,
&FatType::Fat16 => 16,
&FatType::Fat32 => 32,
}
}
pub(crate) fn min_clusters(&self) -> u32 {
match self {
&FatType::Fat12 => 0,
&FatType::Fat16 => Self::FAT16_MIN_CLUSTERS,
&FatType::Fat32 => Self::FAT32_MIN_CLUSTERS,
}
}
pub(crate) fn max_clusters(&self) -> u32 {
match self {
&FatType::Fat12 => Self::FAT16_MIN_CLUSTERS - 1,
&FatType::Fat16 => Self::FAT32_MIN_CLUSTERS - 1,
&FatType::Fat32 => Self::FAT32_MAX_CLUSTERS,
}
}
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct FsStatusFlags {
pub(crate) dirty: bool,
pub(crate) io_error: bool,
}
impl FsStatusFlags {
pub fn dirty(&self) -> bool {
self.dirty
}
pub fn io_error(&self) -> bool {
self.io_error
}
fn encode(&self) -> u8 {
let mut res = 0u8;
if self.dirty {
res |= 1;
}
if self.io_error {
res |= 2;
}
res
}
pub(crate) fn decode(flags: u8) -> Self {
FsStatusFlags { dirty: flags & 1 != 0, io_error: flags & 2 != 0 }
}
}
pub trait ReadSeek: Read + Seek {}
impl<T: Read + Seek> ReadSeek for T {}
pub trait ReadWriteSeek: Read + Write + Seek {}
impl<T: Read + Write + Seek> ReadWriteSeek for T {}
#[derive(Clone, Default, Debug)]
struct FsInfoSector {
free_cluster_count: Option<u32>,
next_free_cluster: Option<u32>,
dirty: bool,
}
impl FsInfoSector {
const LEAD_SIG: u32 = 0x41615252;
const STRUC_SIG: u32 = 0x61417272;
const TRAIL_SIG: u32 = 0xAA550000;
fn deserialize<T: Read>(rdr: &mut T) -> io::Result<FsInfoSector> {
let lead_sig = rdr.read_u32::<LittleEndian>()?;
if lead_sig != Self::LEAD_SIG {
return Err(Error::new(ErrorKind::Other, "invalid lead_sig in FsInfo sector"));
}
let mut reserved = [0u8; 480];
rdr.read_exact(&mut reserved)?;
let struc_sig = rdr.read_u32::<LittleEndian>()?;
if struc_sig != Self::STRUC_SIG {
return Err(Error::new(ErrorKind::Other, "invalid struc_sig in FsInfo sector"));
}
let free_cluster_count = match rdr.read_u32::<LittleEndian>()? {
0xFFFFFFFF => None,
n => Some(n),
};
let next_free_cluster = match rdr.read_u32::<LittleEndian>()? {
0xFFFFFFFF => None,
0 | 1 => {
warn!("invalid next_free_cluster in FsInfo sector (values 0 and 1 are reserved)");
None
},
n => Some(n),
};
let mut reserved2 = [0u8; 12];
rdr.read_exact(&mut reserved2)?;
let trail_sig = rdr.read_u32::<LittleEndian>()?;
if trail_sig != Self::TRAIL_SIG {
return Err(Error::new(ErrorKind::Other, "invalid trail_sig in FsInfo sector"));
}
Ok(FsInfoSector { free_cluster_count, next_free_cluster, dirty: false })
}
fn serialize<T: Write>(&self, wrt: &mut T) -> io::Result<()> {
wrt.write_u32::<LittleEndian>(Self::LEAD_SIG)?;
let reserved = [0u8; 480];
wrt.write_all(&reserved)?;
wrt.write_u32::<LittleEndian>(Self::STRUC_SIG)?;
wrt.write_u32::<LittleEndian>(self.free_cluster_count.unwrap_or(0xFFFFFFFF))?;
wrt.write_u32::<LittleEndian>(self.next_free_cluster.unwrap_or(0xFFFFFFFF))?;
let reserved2 = [0u8; 12];
wrt.write_all(&reserved2)?;
wrt.write_u32::<LittleEndian>(Self::TRAIL_SIG)?;
Ok(())
}
fn validate_and_fix(&mut self, total_clusters: u32) {
let max_valid_cluster_number = total_clusters + RESERVED_FAT_ENTRIES;
if let Some(n) = self.free_cluster_count {
if n > total_clusters {
warn!("invalid free_cluster_count ({}) in fs_info exceeds total cluster count ({})", n, total_clusters);
self.free_cluster_count = None;
}
}
if let Some(n) = self.next_free_cluster {
if n > max_valid_cluster_number {
warn!(
"invalid free_cluster_count ({}) in fs_info exceeds maximum cluster number ({})",
n, max_valid_cluster_number
);
self.next_free_cluster = None;
}
}
}
fn add_free_clusters(&mut self, free_clusters: i32) {
if let Some(n) = self.free_cluster_count {
self.free_cluster_count = Some((n as i32 + free_clusters) as u32);
self.dirty = true;
}
}
fn set_next_free_cluster(&mut self, cluster: u32) {
self.next_free_cluster = Some(cluster);
self.dirty = true;
}
fn set_free_cluster_count(&mut self, free_cluster_count: u32) {
self.free_cluster_count = Some(free_cluster_count);
self.dirty = true;
}
}
#[derive(Copy, Clone, Debug)]
pub struct FsOptions {
pub(crate) update_accessed_date: bool,
pub(crate) oem_cp_converter: &'static OemCpConverter,
pub(crate) time_provider: &'static TimeProvider,
}
impl FsOptions {
pub fn new() -> Self {
FsOptions {
update_accessed_date: false,
oem_cp_converter: &LOSSY_OEM_CP_CONVERTER,
time_provider: &DEFAULT_TIME_PROVIDER,
}
}
pub fn update_accessed_date(mut self, enabled: bool) -> Self {
self.update_accessed_date = enabled;
self
}
pub fn oem_cp_converter(mut self, oem_cp_converter: &'static OemCpConverter) -> Self {
self.oem_cp_converter = oem_cp_converter;
self
}
pub fn time_provider(mut self, time_provider: &'static TimeProvider) -> Self {
self.time_provider = time_provider;
self
}
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct FileSystemStats {
cluster_size: u32,
total_clusters: u32,
free_clusters: u32,
}
impl FileSystemStats {
pub fn cluster_size(&self) -> u32 {
self.cluster_size
}
pub fn total_clusters(&self) -> u32 {
self.total_clusters
}
pub fn free_clusters(&self) -> u32 {
self.free_clusters
}
}
pub struct FileSystem<T: ReadWriteSeek> {
pub(crate) disk: RefCell<T>,
pub(crate) options: FsOptions,
fat_type: FatType,
bpb: BiosParameterBlock,
first_data_sector: u32,
root_dir_sectors: u32,
total_clusters: u32,
fs_info: RefCell<FsInfoSector>,
current_status_flags: Cell<FsStatusFlags>,
}
impl<T: ReadWriteSeek> FileSystem<T> {
pub fn new(mut disk: T, options: FsOptions) -> io::Result<Self> {
trace!("FileSystem::new");
debug_assert!(disk.seek(SeekFrom::Current(0))? == 0);
let bpb = {
let boot = BootSector::deserialize(&mut disk)?;
boot.validate()?;
boot.bpb
};
let root_dir_sectors = bpb.root_dir_sectors();
let first_data_sector = bpb.first_data_sector();
let total_clusters = bpb.total_clusters();
let fat_type = FatType::from_clusters(total_clusters);
let mut fs_info = if fat_type == FatType::Fat32 {
disk.seek(SeekFrom::Start(bpb.bytes_from_sectors(bpb.fs_info_sector())))?;
FsInfoSector::deserialize(&mut disk)?
} else {
FsInfoSector::default()
};
if bpb.status_flags().dirty {
fs_info.free_cluster_count = None;
}
fs_info.validate_and_fix(total_clusters);
let status_flags = bpb.status_flags();
trace!("FileSystem::new end");
Ok(FileSystem {
disk: RefCell::new(disk),
options,
fat_type,
bpb,
first_data_sector,
root_dir_sectors,
total_clusters,
fs_info: RefCell::new(fs_info),
current_status_flags: Cell::new(status_flags),
})
}
pub fn fat_type(&self) -> FatType {
self.fat_type
}
pub fn volume_id(&self) -> u32 {
self.bpb.volume_id
}
#[cfg(feature = "alloc")]
pub fn volume_label(&self) -> String {
let volume_label_iter = self.volume_label_as_bytes().iter().cloned();
let char_iter = volume_label_iter.map(|c| self.options.oem_cp_converter.decode(c));
String::from_iter(char_iter)
}
pub fn volume_label_as_bytes(&self) -> &[u8] {
const PADDING: u8 = 0x20;
let full_label_slice = &self.bpb.volume_label;
let len = full_label_slice.iter().rposition(|b| *b != PADDING).map(|p| p + 1).unwrap_or(0);
&full_label_slice[..len]
}
#[cfg(feature = "alloc")]
pub fn read_volume_label_from_root_dir(&self) -> io::Result<Option<String>> {
let volume_label_opt = self.read_volume_label_from_root_dir_as_bytes()?;
if let Some(volume_label) = volume_label_opt {
const PADDING: u8 = 0x20;
let len = volume_label.iter().rposition(|b| *b != PADDING).map(|p| p + 1).unwrap_or(0);
let label_slice = &volume_label[..len];
let volume_label_iter = label_slice.iter().cloned();
let char_iter = volume_label_iter.map(|c| self.options.oem_cp_converter.decode(c));
Ok(Some(String::from_iter(char_iter)))
} else {
Ok(None)
}
}
pub fn read_volume_label_from_root_dir_as_bytes(&self) -> io::Result<Option<[u8; 11]>> {
let entry_opt = self.root_dir().find_volume_entry()?;
Ok(entry_opt.map(|e| *e.raw_short_name()))
}
pub fn root_dir<'b>(&'b self) -> Dir<'b, T> {
trace!("root_dir");
let root_rdr = {
match self.fat_type {
FatType::Fat12 | FatType::Fat16 => DirRawStream::Root(DiskSlice::from_sectors(
self.first_data_sector - self.root_dir_sectors,
self.root_dir_sectors,
1,
&self.bpb,
FsIoAdapter { fs: self },
)),
_ => DirRawStream::File(File::new(Some(self.bpb.root_dir_first_cluster), None, self)),
}
};
Dir::new(root_rdr, self)
}
fn offset_from_sector(&self, sector: u32) -> u64 {
self.bpb.bytes_from_sectors(sector)
}
fn sector_from_cluster(&self, cluster: u32) -> u32 {
self.first_data_sector + self.bpb.sectors_from_clusters(cluster - RESERVED_FAT_ENTRIES)
}
pub fn cluster_size(&self) -> u32 {
self.bpb.cluster_size()
}
pub(crate) fn offset_from_cluster(&self, cluser: u32) -> u64 {
self.offset_from_sector(self.sector_from_cluster(cluser))
}
pub(crate) fn bytes_from_clusters(&self, clusters: u32) -> u64 {
self.bpb.bytes_from_sectors(self.bpb.sectors_from_clusters(clusters))
}
pub(crate) fn clusters_from_bytes(&self, bytes: u64) -> u32 {
self.bpb.clusters_from_bytes(bytes)
}
fn fat_slice<'b>(&'b self) -> DiskSlice<FsIoAdapter<'b, T>> {
let io = FsIoAdapter { fs: self };
fat_slice(io, &self.bpb)
}
pub(crate) fn cluster_iter<'b>(&'b self, cluster: u32) -> ClusterIterator<DiskSlice<FsIoAdapter<'b, T>>> {
let disk_slice = self.fat_slice();
ClusterIterator::new(disk_slice, self.fat_type, cluster)
}
pub(crate) fn truncate_cluster_chain(&self, cluster: u32) -> io::Result<()> {
let mut iter = self.cluster_iter(cluster);
let num_free = iter.truncate()?;
let mut fs_info = self.fs_info.borrow_mut();
fs_info.add_free_clusters(num_free as i32);
Ok(())
}
pub(crate) fn free_cluster_chain(&self, cluster: u32) -> io::Result<()> {
let mut iter = self.cluster_iter(cluster);
let num_free = iter.free()?;
let mut fs_info = self.fs_info.borrow_mut();
fs_info.add_free_clusters(num_free as i32);
Ok(())
}
pub(crate) fn alloc_cluster(&self, prev_cluster: Option<u32>, zero: bool) -> io::Result<u32> {
trace!("alloc_cluster");
let hint = self.fs_info.borrow().next_free_cluster;
let cluster = {
let mut fat = self.fat_slice();
alloc_cluster(&mut fat, self.fat_type, prev_cluster, hint, self.total_clusters)?
};
if zero {
let mut disk = self.disk.borrow_mut();
disk.seek(SeekFrom::Start(self.offset_from_cluster(cluster)))?;
write_zeros(&mut *disk, self.cluster_size() as u64)?;
}
let mut fs_info = self.fs_info.borrow_mut();
fs_info.set_next_free_cluster(cluster + 1);
fs_info.add_free_clusters(-1);
Ok(cluster)
}
pub fn read_status_flags(&self) -> io::Result<FsStatusFlags> {
let bpb_status = self.bpb.status_flags();
let fat_status = read_fat_flags(&mut self.fat_slice(), self.fat_type)?;
Ok(FsStatusFlags {
dirty: bpb_status.dirty || fat_status.dirty,
io_error: bpb_status.io_error || fat_status.io_error,
})
}
pub fn stats(&self) -> io::Result<FileSystemStats> {
let free_clusters_option = self.fs_info.borrow().free_cluster_count;
let free_clusters = match free_clusters_option {
Some(n) => n,
_ => self.recalc_free_clusters()?,
};
Ok(FileSystemStats { cluster_size: self.cluster_size(), total_clusters: self.total_clusters, free_clusters })
}
fn recalc_free_clusters(&self) -> io::Result<u32> {
let mut fat = self.fat_slice();
let free_cluster_count = count_free_clusters(&mut fat, self.fat_type, self.total_clusters)?;
self.fs_info.borrow_mut().set_free_cluster_count(free_cluster_count);
Ok(free_cluster_count)
}
pub fn unmount(self) -> io::Result<()> {
self.unmount_internal()
}
fn unmount_internal(&self) -> io::Result<()> {
self.flush_fs_info()?;
self.set_dirty_flag(false)?;
Ok(())
}
fn flush_fs_info(&self) -> io::Result<()> {
let mut fs_info = self.fs_info.borrow_mut();
if self.fat_type == FatType::Fat32 && fs_info.dirty {
let mut disk = self.disk.borrow_mut();
disk.seek(SeekFrom::Start(self.offset_from_sector(self.bpb.fs_info_sector as u32)))?;
fs_info.serialize(&mut *disk)?;
fs_info.dirty = false;
}
Ok(())
}
pub(crate) fn set_dirty_flag(&self, dirty: bool) -> io::Result<()> {
let mut flags = self.bpb.status_flags();
flags.dirty |= dirty;
let current_flags = self.current_status_flags.get();
if flags == current_flags {
return Ok(());
}
let encoded = flags.encode();
let offset = if self.fat_type() == FatType::Fat32 { 0x041 } else { 0x025 };
let mut disk = self.disk.borrow_mut();
disk.seek(io::SeekFrom::Start(offset))?;
disk.write_u8(encoded)?;
self.current_status_flags.set(flags);
Ok(())
}
}
impl<T: ReadWriteSeek> Drop for FileSystem<T> {
fn drop(&mut self) {
if let Err(err) = self.unmount_internal() {
error!("unmount failed {}", err);
}
}
}
pub(crate) struct FsIoAdapter<'a, T: ReadWriteSeek + 'a> {
fs: &'a FileSystem<T>,
}
impl<'a, T: ReadWriteSeek> Read for FsIoAdapter<'a, T> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.fs.disk.borrow_mut().read(buf)
}
}
impl<'a, T: ReadWriteSeek> Write for FsIoAdapter<'a, T> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let size = self.fs.disk.borrow_mut().write(buf)?;
if size > 0 {
self.fs.set_dirty_flag(true)?;
}
Ok(size)
}
fn flush(&mut self) -> io::Result<()> {
self.fs.disk.borrow_mut().flush()
}
}
impl<'a, T: ReadWriteSeek> Seek for FsIoAdapter<'a, T> {
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
self.fs.disk.borrow_mut().seek(pos)
}
}
impl<'a, T: ReadWriteSeek> Clone for FsIoAdapter<'a, T> {
fn clone(&self) -> Self {
FsIoAdapter { fs: self.fs }
}
}
fn fat_slice<T: ReadWriteSeek>(io: T, bpb: &BiosParameterBlock) -> DiskSlice<T> {
let sectors_per_fat = bpb.sectors_per_fat();
let mirroring_enabled = bpb.mirroring_enabled();
let (fat_first_sector, mirrors) = if mirroring_enabled {
(bpb.reserved_sectors(), bpb.fats)
} else {
let active_fat = bpb.active_fat() as u32;
let fat_first_sector = (bpb.reserved_sectors()) + active_fat * sectors_per_fat;
(fat_first_sector, 1)
};
DiskSlice::from_sectors(fat_first_sector, sectors_per_fat, mirrors, bpb, io)
}
pub(crate) struct DiskSlice<T> {
begin: u64,
size: u64,
offset: u64,
mirrors: u8,
inner: T,
}
impl<T> DiskSlice<T> {
pub(crate) fn new(begin: u64, size: u64, mirrors: u8, inner: T) -> Self {
DiskSlice { begin, size, mirrors, inner, offset: 0 }
}
fn from_sectors(first_sector: u32, sector_count: u32, mirrors: u8, bpb: &BiosParameterBlock, inner: T) -> Self {
Self::new(bpb.bytes_from_sectors(first_sector), bpb.bytes_from_sectors(sector_count), mirrors, inner)
}
pub(crate) fn abs_pos(&self) -> u64 {
self.begin + self.offset
}
}
impl<T: Clone> Clone for DiskSlice<T> {
fn clone(&self) -> Self {
DiskSlice {
begin: self.begin,
size: self.size,
offset: self.offset,
mirrors: self.mirrors,
inner: self.inner.clone(),
}
}
}
impl<'a, T: Read + Seek> Read for DiskSlice<T> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let offset = self.begin + self.offset;
let read_size = cmp::min((self.size - self.offset) as usize, buf.len());
self.inner.seek(SeekFrom::Start(offset))?;
let size = self.inner.read(&mut buf[..read_size])?;
self.offset += size as u64;
Ok(size)
}
}
impl<'a, T: Write + Seek> Write for DiskSlice<T> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let offset = self.begin + self.offset;
let write_size = cmp::min((self.size - self.offset) as usize, buf.len());
if write_size == 0 {
return Ok(0);
}
for i in 0..self.mirrors {
self.inner.seek(SeekFrom::Start(offset + i as u64 * self.size))?;
self.inner.write_all(&buf[..write_size])?;
}
self.offset += write_size as u64;
Ok(write_size)
}
fn flush(&mut self) -> io::Result<()> {
self.inner.flush()
}
}
impl<'a, T> Seek for DiskSlice<T> {
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
let new_offset = match pos {
SeekFrom::Current(x) => self.offset as i64 + x,
SeekFrom::Start(x) => x as i64,
SeekFrom::End(x) => self.size as i64 + x,
};
if new_offset < 0 || new_offset as u64 > self.size {
Err(io::Error::new(ErrorKind::InvalidInput, "Seek to a negative offset"))
} else {
self.offset = new_offset as u64;
Ok(self.offset)
}
}
}
pub trait OemCpConverter: Debug {
fn decode(&self, oem_char: u8) -> char;
fn encode(&self, uni_char: char) -> Option<u8>;
}
#[derive(Debug)]
pub(crate) struct LossyOemCpConverter {
_dummy: (),
}
impl OemCpConverter for LossyOemCpConverter {
fn decode(&self, oem_char: u8) -> char {
if oem_char <= 0x7F {
oem_char as char
} else {
'\u{FFFD}'
}
}
fn encode(&self, uni_char: char) -> Option<u8> {
if uni_char <= '\x7F' {
Some(uni_char as u8)
} else {
None
}
}
}
pub(crate) static LOSSY_OEM_CP_CONVERTER: LossyOemCpConverter = LossyOemCpConverter { _dummy: () };
pub(crate) fn write_zeros<T: ReadWriteSeek>(mut disk: T, mut len: u64) -> io::Result<()> {
const ZEROS: [u8; 512] = [0u8; 512];
while len > 0 {
let write_size = cmp::min(len, ZEROS.len() as u64) as usize;
disk.write_all(&ZEROS[..write_size])?;
len -= write_size as u64;
}
Ok(())
}
fn write_zeros_until_end_of_sector<T: ReadWriteSeek>(mut disk: T, bytes_per_sector: u16) -> io::Result<()> {
let pos = disk.seek(SeekFrom::Current(0))?;
let total_bytes_to_write = bytes_per_sector as u64 - (pos % bytes_per_sector as u64);
if total_bytes_to_write != bytes_per_sector as u64 {
write_zeros(disk, total_bytes_to_write)?;
}
Ok(())
}
#[derive(Default, Debug, Clone)]
pub struct FormatVolumeOptions {
pub(crate) bytes_per_sector: Option<u16>,
pub(crate) total_sectors: Option<u32>,
pub(crate) bytes_per_cluster: Option<u32>,
pub(crate) fat_type: Option<FatType>,
pub(crate) max_root_dir_entries: Option<u16>,
pub(crate) fats: Option<u8>,
pub(crate) media: Option<u8>,
pub(crate) sectors_per_track: Option<u16>,
pub(crate) heads: Option<u16>,
pub(crate) drive_num: Option<u8>,
pub(crate) volume_id: Option<u32>,
pub(crate) volume_label: Option<[u8; 11]>,
}
impl FormatVolumeOptions {
pub fn new() -> Self {
FormatVolumeOptions { ..Default::default() }
}
pub fn bytes_per_cluster(mut self, bytes_per_cluster: u32) -> Self {
assert!(bytes_per_cluster.count_ones() == 1 && bytes_per_cluster >= 512, "Invalid bytes_per_cluster");
self.bytes_per_cluster = Some(bytes_per_cluster);
self
}
pub fn fat_type(mut self, fat_type: FatType) -> Self {
self.fat_type = Some(fat_type);
self
}
pub fn bytes_per_sector(mut self, bytes_per_sector: u16) -> Self {
assert!(bytes_per_sector.count_ones() == 1 && bytes_per_sector >= 512, "Invalid bytes_per_sector");
self.bytes_per_sector = Some(bytes_per_sector);
self
}
pub fn total_sectors(mut self, total_sectors: u32) -> Self {
self.total_sectors = Some(total_sectors);
self
}
pub fn max_root_dir_entries(mut self, max_root_dir_entries: u16) -> Self {
self.max_root_dir_entries = Some(max_root_dir_entries);
self
}
pub fn fats(mut self, fats: u8) -> Self {
assert!(fats >= 1 && fats <= 2, "Invalid number of FATs");
self.fats = Some(fats);
self
}
pub fn media(mut self, media: u8) -> Self {
self.media = Some(media);
self
}
pub fn sectors_per_track(mut self, sectors_per_track: u16) -> Self {
self.sectors_per_track = Some(sectors_per_track);
self
}
pub fn heads(mut self, heads: u16) -> Self {
self.heads = Some(heads);
self
}
pub fn drive_num(mut self, drive_num: u8) -> Self {
self.drive_num = Some(drive_num);
self
}
pub fn volume_id(mut self, volume_id: u32) -> Self {
self.volume_id = Some(volume_id);
self
}
pub fn volume_label(mut self, volume_label: [u8; 11]) -> Self {
self.volume_label = Some(volume_label);
self
}
}
pub fn format_volume<T: ReadWriteSeek>(mut disk: T, options: FormatVolumeOptions) -> io::Result<()> {
trace!("format_volume");
debug_assert!(disk.seek(SeekFrom::Current(0))? == 0);
let bytes_per_sector = options.bytes_per_sector.unwrap_or(512);
let total_sectors = if options.total_sectors.is_none() {
let total_bytes: u64 = disk.seek(SeekFrom::End(0))?;
let total_sectors_64 = total_bytes / u64::from(bytes_per_sector);
disk.seek(SeekFrom::Start(0))?;
if total_sectors_64 > u64::from(u32::MAX) {
return Err(Error::new(ErrorKind::Other, "Volume has too many sectors"));
}
total_sectors_64 as u32
} else {
options.total_sectors.unwrap() };
let (boot, fat_type) = format_boot_sector(&options, total_sectors, bytes_per_sector)?;
boot.validate()?;
boot.serialize(&mut disk)?;
let bytes_per_sector = boot.bpb.bytes_per_sector;
write_zeros_until_end_of_sector(&mut disk, bytes_per_sector)?;
if boot.bpb.is_fat32() {
let fs_info_sector = FsInfoSector { free_cluster_count: None, next_free_cluster: None, dirty: false };
disk.seek(SeekFrom::Start(boot.bpb.bytes_from_sectors(boot.bpb.fs_info_sector())))?;
fs_info_sector.serialize(&mut disk)?;
write_zeros_until_end_of_sector(&mut disk, bytes_per_sector)?;
disk.seek(SeekFrom::Start(boot.bpb.bytes_from_sectors(boot.bpb.backup_boot_sector())))?;
boot.serialize(&mut disk)?;
write_zeros_until_end_of_sector(&mut disk, bytes_per_sector)?;
}
let reserved_sectors = boot.bpb.reserved_sectors();
let fat_pos = boot.bpb.bytes_from_sectors(reserved_sectors);
let sectors_per_all_fats = boot.bpb.sectors_per_all_fats();
disk.seek(SeekFrom::Start(fat_pos))?;
write_zeros(&mut disk, boot.bpb.bytes_from_sectors(sectors_per_all_fats))?;
{
let mut fat_slice = fat_slice(&mut disk, &boot.bpb);
let sectors_per_fat = boot.bpb.sectors_per_fat();
let bytes_per_fat = boot.bpb.bytes_from_sectors(sectors_per_fat);
format_fat(&mut fat_slice, fat_type, boot.bpb.media, bytes_per_fat, boot.bpb.total_clusters())?;
}
let root_dir_first_sector = reserved_sectors + sectors_per_all_fats;
let root_dir_sectors = boot.bpb.root_dir_sectors();
let root_dir_pos = boot.bpb.bytes_from_sectors(root_dir_first_sector);
disk.seek(SeekFrom::Start(root_dir_pos))?;
write_zeros(&mut disk, boot.bpb.bytes_from_sectors(root_dir_sectors))?;
if fat_type == FatType::Fat32 {
let root_dir_first_cluster = {
let mut fat_slice = fat_slice(&mut disk, &boot.bpb);
alloc_cluster(&mut fat_slice, fat_type, None, None, 1)?
};
assert!(root_dir_first_cluster == boot.bpb.root_dir_first_cluster);
let first_data_sector = reserved_sectors + sectors_per_all_fats + root_dir_sectors;
let root_dir_first_sector =
first_data_sector + boot.bpb.sectors_from_clusters(root_dir_first_cluster - RESERVED_FAT_ENTRIES);
let root_dir_pos = boot.bpb.bytes_from_sectors(root_dir_first_sector);
disk.seek(SeekFrom::Start(root_dir_pos))?;
write_zeros(&mut disk, boot.bpb.cluster_size() as u64)?;
}
if let Some(volume_label) = options.volume_label {
disk.seek(SeekFrom::Start(root_dir_pos))?;
let volume_entry = DirFileEntryData::new(volume_label, FileAttributes::VOLUME_ID);
volume_entry.serialize(&mut disk)?;
}
disk.seek(SeekFrom::Start(0))?;
trace!("format_volume end");
Ok(())
}