1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
#[cfg(all(not(feature = "std"), feature = "alloc"))]
use alloc::string::String;
use core::cell::{Cell, RefCell};
use core::char;
use core::cmp;
use core::fmt::Debug;
use core::iter::FromIterator;
use core::u32;
use io;
use io::prelude::*;
use io::{Error, ErrorKind, SeekFrom};

use byteorder::LittleEndian;
use byteorder_ext::{ReadBytesExt, WriteBytesExt};

use boot_sector::{format_boot_sector, BiosParameterBlock, BootSector};
use dir::{Dir, DirRawStream};
use dir_entry::{DirFileEntryData, FileAttributes};
use file::File;
use table::{alloc_cluster, count_free_clusters, format_fat, read_fat_flags, ClusterIterator, RESERVED_FAT_ENTRIES};
use time::{TimeProvider, DEFAULT_TIME_PROVIDER};

// FAT implementation based on:
//   http://wiki.osdev.org/FAT
//   https://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html

/// A type of FAT filesystem.
///
/// `FatType` values are based on the size of File Allocation Table entry.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum FatType {
    /// 12 bits per FAT entry
    Fat12,
    /// 16 bits per FAT entry
    Fat16,
    /// 32 bits per FAT entry
    Fat32,
}

impl FatType {
    const FAT16_MIN_CLUSTERS: u32 = 4085;
    const FAT32_MIN_CLUSTERS: u32 = 65525;
    const FAT32_MAX_CLUSTERS: u32 = 0x0FFF_FFF4;

    pub(crate) fn from_clusters(total_clusters: u32) -> FatType {
        if total_clusters < Self::FAT16_MIN_CLUSTERS {
            FatType::Fat12
        } else if total_clusters < Self::FAT32_MIN_CLUSTERS {
            FatType::Fat16
        } else {
            FatType::Fat32
        }
    }

    pub(crate) fn bits_per_fat_entry(&self) -> u32 {
        match self {
            &FatType::Fat12 => 12,
            &FatType::Fat16 => 16,
            &FatType::Fat32 => 32,
        }
    }

    pub(crate) fn min_clusters(&self) -> u32 {
        match self {
            &FatType::Fat12 => 0,
            &FatType::Fat16 => Self::FAT16_MIN_CLUSTERS,
            &FatType::Fat32 => Self::FAT32_MIN_CLUSTERS,
        }
    }

    pub(crate) fn max_clusters(&self) -> u32 {
        match self {
            &FatType::Fat12 => Self::FAT16_MIN_CLUSTERS - 1,
            &FatType::Fat16 => Self::FAT32_MIN_CLUSTERS - 1,
            &FatType::Fat32 => Self::FAT32_MAX_CLUSTERS,
        }
    }
}

/// A FAT volume status flags retrived from the Boot Sector and the allocation table second entry.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct FsStatusFlags {
    pub(crate) dirty: bool,
    pub(crate) io_error: bool,
}

impl FsStatusFlags {
    /// Checks if the volume is marked as dirty.
    ///
    /// Dirty flag means volume has been suddenly ejected from filesystem without unmounting.
    pub fn dirty(&self) -> bool {
        self.dirty
    }

    /// Checks if the volume has the IO Error flag active.
    pub fn io_error(&self) -> bool {
        self.io_error
    }

    fn encode(&self) -> u8 {
        let mut res = 0u8;
        if self.dirty {
            res |= 1;
        }
        if self.io_error {
            res |= 2;
        }
        res
    }

    pub(crate) fn decode(flags: u8) -> Self {
        FsStatusFlags { dirty: flags & 1 != 0, io_error: flags & 2 != 0 }
    }
}

/// A sum of `Read` and `Seek` traits.
pub trait ReadSeek: Read + Seek {}
impl<T: Read + Seek> ReadSeek for T {}

/// A sum of `Read`, `Write` and `Seek` traits.
pub trait ReadWriteSeek: Read + Write + Seek {}
impl<T: Read + Write + Seek> ReadWriteSeek for T {}

#[derive(Clone, Default, Debug)]
struct FsInfoSector {
    free_cluster_count: Option<u32>,
    next_free_cluster: Option<u32>,
    dirty: bool,
}

impl FsInfoSector {
    const LEAD_SIG: u32 = 0x41615252;
    const STRUC_SIG: u32 = 0x61417272;
    const TRAIL_SIG: u32 = 0xAA550000;

    fn deserialize<T: Read>(rdr: &mut T) -> io::Result<FsInfoSector> {
        let lead_sig = rdr.read_u32::<LittleEndian>()?;
        if lead_sig != Self::LEAD_SIG {
            return Err(Error::new(ErrorKind::Other, "invalid lead_sig in FsInfo sector"));
        }
        let mut reserved = [0u8; 480];
        rdr.read_exact(&mut reserved)?;
        let struc_sig = rdr.read_u32::<LittleEndian>()?;
        if struc_sig != Self::STRUC_SIG {
            return Err(Error::new(ErrorKind::Other, "invalid struc_sig in FsInfo sector"));
        }
        let free_cluster_count = match rdr.read_u32::<LittleEndian>()? {
            0xFFFFFFFF => None,
            // Note: value is validated in FileSystem::new function using values from BPB
            n => Some(n),
        };
        let next_free_cluster = match rdr.read_u32::<LittleEndian>()? {
            0xFFFFFFFF => None,
            0 | 1 => {
                warn!("invalid next_free_cluster in FsInfo sector (values 0 and 1 are reserved)");
                None
            },
            // Note: other values are validated in FileSystem::new function using values from BPB
            n => Some(n),
        };
        let mut reserved2 = [0u8; 12];
        rdr.read_exact(&mut reserved2)?;
        let trail_sig = rdr.read_u32::<LittleEndian>()?;
        if trail_sig != Self::TRAIL_SIG {
            return Err(Error::new(ErrorKind::Other, "invalid trail_sig in FsInfo sector"));
        }
        Ok(FsInfoSector { free_cluster_count, next_free_cluster, dirty: false })
    }

    fn serialize<T: Write>(&self, wrt: &mut T) -> io::Result<()> {
        wrt.write_u32::<LittleEndian>(Self::LEAD_SIG)?;
        let reserved = [0u8; 480];
        wrt.write_all(&reserved)?;
        wrt.write_u32::<LittleEndian>(Self::STRUC_SIG)?;
        wrt.write_u32::<LittleEndian>(self.free_cluster_count.unwrap_or(0xFFFFFFFF))?;
        wrt.write_u32::<LittleEndian>(self.next_free_cluster.unwrap_or(0xFFFFFFFF))?;
        let reserved2 = [0u8; 12];
        wrt.write_all(&reserved2)?;
        wrt.write_u32::<LittleEndian>(Self::TRAIL_SIG)?;
        Ok(())
    }

    fn validate_and_fix(&mut self, total_clusters: u32) {
        let max_valid_cluster_number = total_clusters + RESERVED_FAT_ENTRIES;
        if let Some(n) = self.free_cluster_count {
            if n > total_clusters {
                warn!("invalid free_cluster_count ({}) in fs_info exceeds total cluster count ({})", n, total_clusters);
                self.free_cluster_count = None;
            }
        }
        if let Some(n) = self.next_free_cluster {
            if n > max_valid_cluster_number {
                warn!(
                    "invalid free_cluster_count ({}) in fs_info exceeds maximum cluster number ({})",
                    n, max_valid_cluster_number
                );
                self.next_free_cluster = None;
            }
        }
    }

    fn add_free_clusters(&mut self, free_clusters: i32) {
        if let Some(n) = self.free_cluster_count {
            self.free_cluster_count = Some((n as i32 + free_clusters) as u32);
            self.dirty = true;
        }
    }

    fn set_next_free_cluster(&mut self, cluster: u32) {
        self.next_free_cluster = Some(cluster);
        self.dirty = true;
    }

    fn set_free_cluster_count(&mut self, free_cluster_count: u32) {
        self.free_cluster_count = Some(free_cluster_count);
        self.dirty = true;
    }
}

/// A FAT filesystem mount options.
///
/// Options are specified as an argument for `FileSystem::new` method.
#[derive(Copy, Clone, Debug)]
pub struct FsOptions {
    pub(crate) update_accessed_date: bool,
    pub(crate) oem_cp_converter: &'static OemCpConverter,
    pub(crate) time_provider: &'static TimeProvider,
}

impl FsOptions {
    /// Creates a `FsOptions` struct with default options.
    pub fn new() -> Self {
        FsOptions {
            update_accessed_date: false,
            oem_cp_converter: &LOSSY_OEM_CP_CONVERTER,
            time_provider: &DEFAULT_TIME_PROVIDER,
        }
    }

    /// If enabled accessed date field in directory entry is updated when reading or writing a file.
    pub fn update_accessed_date(mut self, enabled: bool) -> Self {
        self.update_accessed_date = enabled;
        self
    }

    /// Changes default OEM code page encoder-decoder.
    pub fn oem_cp_converter(mut self, oem_cp_converter: &'static OemCpConverter) -> Self {
        self.oem_cp_converter = oem_cp_converter;
        self
    }

    /// Changes default time provider.
    pub fn time_provider(mut self, time_provider: &'static TimeProvider) -> Self {
        self.time_provider = time_provider;
        self
    }
}

/// A FAT volume statistics.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct FileSystemStats {
    cluster_size: u32,
    total_clusters: u32,
    free_clusters: u32,
}

impl FileSystemStats {
    /// Cluster size in bytes
    pub fn cluster_size(&self) -> u32 {
        self.cluster_size
    }

    /// Number of total clusters in filesystem usable for file allocation
    pub fn total_clusters(&self) -> u32 {
        self.total_clusters
    }

    /// Number of free clusters
    pub fn free_clusters(&self) -> u32 {
        self.free_clusters
    }
}

/// A FAT filesystem object.
///
/// `FileSystem` struct is representing a state of a mounted FAT volume.
pub struct FileSystem<T: ReadWriteSeek> {
    pub(crate) disk: RefCell<T>,
    pub(crate) options: FsOptions,
    fat_type: FatType,
    bpb: BiosParameterBlock,
    first_data_sector: u32,
    root_dir_sectors: u32,
    total_clusters: u32,
    fs_info: RefCell<FsInfoSector>,
    current_status_flags: Cell<FsStatusFlags>,
}

impl<T: ReadWriteSeek> FileSystem<T> {
    /// Creates a new filesystem object instance.
    ///
    /// Supplied `disk` parameter cannot be seeked. If there is a need to read a fragment of disk
    /// image (e.g. partition) library user should wrap the file struct in a struct limiting
    /// access to partition bytes only e.g. `fscommon::StreamSlice`.
    ///
    /// Note: creating multiple filesystem objects with one underlying device/disk image can
    /// cause a filesystem corruption.
    pub fn new(mut disk: T, options: FsOptions) -> io::Result<Self> {
        // Make sure given image is not seeked
        trace!("FileSystem::new");
        debug_assert!(disk.seek(SeekFrom::Current(0))? == 0);

        // read boot sector
        let bpb = {
            let boot = BootSector::deserialize(&mut disk)?;
            boot.validate()?;
            boot.bpb
        };

        let root_dir_sectors = bpb.root_dir_sectors();
        let first_data_sector = bpb.first_data_sector();
        let total_clusters = bpb.total_clusters();
        let fat_type = FatType::from_clusters(total_clusters);

        // read FSInfo sector if this is FAT32
        let mut fs_info = if fat_type == FatType::Fat32 {
            disk.seek(SeekFrom::Start(bpb.bytes_from_sectors(bpb.fs_info_sector())))?;
            FsInfoSector::deserialize(&mut disk)?
        } else {
            FsInfoSector::default()
        };

        // if dirty flag is set completly ignore free_cluster_count in FSInfo
        if bpb.status_flags().dirty {
            fs_info.free_cluster_count = None;
        }

        // Validate the numbers stored in the free_cluster_count and next_free_cluster are within bounds for volume
        fs_info.validate_and_fix(total_clusters);

        // return FileSystem struct
        let status_flags = bpb.status_flags();
        trace!("FileSystem::new end");
        Ok(FileSystem {
            disk: RefCell::new(disk),
            options,
            fat_type,
            bpb,
            first_data_sector,
            root_dir_sectors,
            total_clusters,
            fs_info: RefCell::new(fs_info),
            current_status_flags: Cell::new(status_flags),
        })
    }

    /// Returns a type of File Allocation Table (FAT) used by this filesystem.
    pub fn fat_type(&self) -> FatType {
        self.fat_type
    }

    /// Returns a volume identifier read from BPB in the Boot Sector.
    pub fn volume_id(&self) -> u32 {
        self.bpb.volume_id
    }

    /// Returns a volume label from BPB in the Boot Sector as `String`.
    ///
    /// Non-ASCII characters are replaced by the replacement character (U+FFFD).
    /// Note: This function returns label stored in the BPB structure. Use `read_volume_label_from_root_dir` to read
    /// label from the root directory.
    #[cfg(feature = "alloc")]
    pub fn volume_label(&self) -> String {
        // Decode volume label from OEM codepage
        let volume_label_iter = self.volume_label_as_bytes().iter().cloned();
        let char_iter = volume_label_iter.map(|c| self.options.oem_cp_converter.decode(c));
        // Build string from character iterator
        String::from_iter(char_iter)
    }

    /// Returns a volume label from BPB in the Boot Sector as byte array slice.
    ///
    /// Label is encoded in the OEM codepage.
    /// Note: This function returns label stored in the BPB structure. Use `read_volume_label_from_root_dir_as_bytes`
    /// to read label from the root directory.
    pub fn volume_label_as_bytes(&self) -> &[u8] {
        const PADDING: u8 = 0x20;
        let full_label_slice = &self.bpb.volume_label;
        let len = full_label_slice.iter().rposition(|b| *b != PADDING).map(|p| p + 1).unwrap_or(0);
        &full_label_slice[..len]
    }

    /// Returns a volume label from root directory as `String`.
    ///
    /// It finds file with `VOLUME_ID` attribute and returns its short name.
    #[cfg(feature = "alloc")]
    pub fn read_volume_label_from_root_dir(&self) -> io::Result<Option<String>> {
        // Note: DirEntry::file_short_name() cannot be used because it interprets name as 8.3
        // (adds dot before an extension)
        let volume_label_opt = self.read_volume_label_from_root_dir_as_bytes()?;
        if let Some(volume_label) = volume_label_opt {
            const PADDING: u8 = 0x20;
            // Strip label padding
            let len = volume_label.iter().rposition(|b| *b != PADDING).map(|p| p + 1).unwrap_or(0);
            let label_slice = &volume_label[..len];
            // Decode volume label from OEM codepage
            let volume_label_iter = label_slice.iter().cloned();
            let char_iter = volume_label_iter.map(|c| self.options.oem_cp_converter.decode(c));
            // Build string from character iterator
            Ok(Some(String::from_iter(char_iter)))
        } else {
            Ok(None)
        }
    }

    /// Returns a volume label from root directory as byte array.
    ///
    /// Label is encoded in the OEM codepage.
    /// It finds file with `VOLUME_ID` attribute and returns its short name.
    pub fn read_volume_label_from_root_dir_as_bytes(&self) -> io::Result<Option<[u8; 11]>> {
        let entry_opt = self.root_dir().find_volume_entry()?;
        Ok(entry_opt.map(|e| *e.raw_short_name()))
    }

    /// Returns a root directory object allowing for futher penetration of a filesystem structure.
    pub fn root_dir<'b>(&'b self) -> Dir<'b, T> {
        trace!("root_dir");
        let root_rdr = {
            match self.fat_type {
                FatType::Fat12 | FatType::Fat16 => DirRawStream::Root(DiskSlice::from_sectors(
                    self.first_data_sector - self.root_dir_sectors,
                    self.root_dir_sectors,
                    1,
                    &self.bpb,
                    FsIoAdapter { fs: self },
                )),
                _ => DirRawStream::File(File::new(Some(self.bpb.root_dir_first_cluster), None, self)),
            }
        };
        Dir::new(root_rdr, self)
    }

    fn offset_from_sector(&self, sector: u32) -> u64 {
        self.bpb.bytes_from_sectors(sector)
    }

    fn sector_from_cluster(&self, cluster: u32) -> u32 {
        self.first_data_sector + self.bpb.sectors_from_clusters(cluster - RESERVED_FAT_ENTRIES)
    }

    pub fn cluster_size(&self) -> u32 {
        self.bpb.cluster_size()
    }

    pub(crate) fn offset_from_cluster(&self, cluser: u32) -> u64 {
        self.offset_from_sector(self.sector_from_cluster(cluser))
    }

    pub(crate) fn bytes_from_clusters(&self, clusters: u32) -> u64 {
        self.bpb.bytes_from_sectors(self.bpb.sectors_from_clusters(clusters))
    }

    pub(crate) fn clusters_from_bytes(&self, bytes: u64) -> u32 {
        self.bpb.clusters_from_bytes(bytes)
    }

    fn fat_slice<'b>(&'b self) -> DiskSlice<FsIoAdapter<'b, T>> {
        let io = FsIoAdapter { fs: self };
        fat_slice(io, &self.bpb)
    }

    pub(crate) fn cluster_iter<'b>(&'b self, cluster: u32) -> ClusterIterator<DiskSlice<FsIoAdapter<'b, T>>> {
        let disk_slice = self.fat_slice();
        ClusterIterator::new(disk_slice, self.fat_type, cluster)
    }

    pub(crate) fn truncate_cluster_chain(&self, cluster: u32) -> io::Result<()> {
        let mut iter = self.cluster_iter(cluster);
        let num_free = iter.truncate()?;
        let mut fs_info = self.fs_info.borrow_mut();
        fs_info.add_free_clusters(num_free as i32);
        Ok(())
    }

    pub(crate) fn free_cluster_chain(&self, cluster: u32) -> io::Result<()> {
        let mut iter = self.cluster_iter(cluster);
        let num_free = iter.free()?;
        let mut fs_info = self.fs_info.borrow_mut();
        fs_info.add_free_clusters(num_free as i32);
        Ok(())
    }

    pub(crate) fn alloc_cluster(&self, prev_cluster: Option<u32>, zero: bool) -> io::Result<u32> {
        trace!("alloc_cluster");
        let hint = self.fs_info.borrow().next_free_cluster;
        let cluster = {
            let mut fat = self.fat_slice();
            alloc_cluster(&mut fat, self.fat_type, prev_cluster, hint, self.total_clusters)?
        };
        if zero {
            let mut disk = self.disk.borrow_mut();
            disk.seek(SeekFrom::Start(self.offset_from_cluster(cluster)))?;
            write_zeros(&mut *disk, self.cluster_size() as u64)?;
        }
        let mut fs_info = self.fs_info.borrow_mut();
        fs_info.set_next_free_cluster(cluster + 1);
        fs_info.add_free_clusters(-1);
        Ok(cluster)
    }

    /// Returns status flags for this volume.
    pub fn read_status_flags(&self) -> io::Result<FsStatusFlags> {
        let bpb_status = self.bpb.status_flags();
        let fat_status = read_fat_flags(&mut self.fat_slice(), self.fat_type)?;
        Ok(FsStatusFlags {
            dirty: bpb_status.dirty || fat_status.dirty,
            io_error: bpb_status.io_error || fat_status.io_error,
        })
    }

    /// Returns filesystem statistics like number of total and free clusters.
    ///
    /// For FAT32 volumes number of free clusters from FSInfo sector is returned (may be incorrect).
    /// For other FAT variants number is computed on the first call to this method and cached for later use.
    pub fn stats(&self) -> io::Result<FileSystemStats> {
        let free_clusters_option = self.fs_info.borrow().free_cluster_count;
        let free_clusters = match free_clusters_option {
            Some(n) => n,
            _ => self.recalc_free_clusters()?,
        };
        Ok(FileSystemStats { cluster_size: self.cluster_size(), total_clusters: self.total_clusters, free_clusters })
    }

    /// Forces free clusters recalculation.
    fn recalc_free_clusters(&self) -> io::Result<u32> {
        let mut fat = self.fat_slice();
        let free_cluster_count = count_free_clusters(&mut fat, self.fat_type, self.total_clusters)?;
        self.fs_info.borrow_mut().set_free_cluster_count(free_cluster_count);
        Ok(free_cluster_count)
    }

    /// Unmounts the filesystem.
    ///
    /// Updates FSInfo sector if needed.
    pub fn unmount(self) -> io::Result<()> {
        self.unmount_internal()
    }

    fn unmount_internal(&self) -> io::Result<()> {
        self.flush_fs_info()?;
        self.set_dirty_flag(false)?;
        Ok(())
    }

    fn flush_fs_info(&self) -> io::Result<()> {
        let mut fs_info = self.fs_info.borrow_mut();
        if self.fat_type == FatType::Fat32 && fs_info.dirty {
            let mut disk = self.disk.borrow_mut();
            disk.seek(SeekFrom::Start(self.offset_from_sector(self.bpb.fs_info_sector as u32)))?;
            fs_info.serialize(&mut *disk)?;
            fs_info.dirty = false;
        }
        Ok(())
    }

    pub(crate) fn set_dirty_flag(&self, dirty: bool) -> io::Result<()> {
        // Do not overwrite flags read from BPB on mount
        let mut flags = self.bpb.status_flags();
        flags.dirty |= dirty;
        // Check if flags has changed
        let current_flags = self.current_status_flags.get();
        if flags == current_flags {
            // Nothing to do
            return Ok(());
        }
        let encoded = flags.encode();
        // Note: only one field is written to avoid rewriting entire boot-sector which could be dangerous
        // Compute reserver_1 field offset and write new flags
        let offset = if self.fat_type() == FatType::Fat32 { 0x041 } else { 0x025 };
        let mut disk = self.disk.borrow_mut();
        disk.seek(io::SeekFrom::Start(offset))?;
        disk.write_u8(encoded)?;
        self.current_status_flags.set(flags);
        Ok(())
    }
}

/// `Drop` implementation tries to unmount the filesystem when dropping.
impl<T: ReadWriteSeek> Drop for FileSystem<T> {
    fn drop(&mut self) {
        if let Err(err) = self.unmount_internal() {
            error!("unmount failed {}", err);
        }
    }
}

pub(crate) struct FsIoAdapter<'a, T: ReadWriteSeek + 'a> {
    fs: &'a FileSystem<T>,
}

impl<'a, T: ReadWriteSeek> Read for FsIoAdapter<'a, T> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.fs.disk.borrow_mut().read(buf)
    }
}

impl<'a, T: ReadWriteSeek> Write for FsIoAdapter<'a, T> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        let size = self.fs.disk.borrow_mut().write(buf)?;
        if size > 0 {
            self.fs.set_dirty_flag(true)?;
        }
        Ok(size)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.fs.disk.borrow_mut().flush()
    }
}

impl<'a, T: ReadWriteSeek> Seek for FsIoAdapter<'a, T> {
    fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
        self.fs.disk.borrow_mut().seek(pos)
    }
}

// Note: derive cannot be used because of invalid bounds. See: https://github.com/rust-lang/rust/issues/26925
impl<'a, T: ReadWriteSeek> Clone for FsIoAdapter<'a, T> {
    fn clone(&self) -> Self {
        FsIoAdapter { fs: self.fs }
    }
}

fn fat_slice<T: ReadWriteSeek>(io: T, bpb: &BiosParameterBlock) -> DiskSlice<T> {
    let sectors_per_fat = bpb.sectors_per_fat();
    let mirroring_enabled = bpb.mirroring_enabled();
    let (fat_first_sector, mirrors) = if mirroring_enabled {
        (bpb.reserved_sectors(), bpb.fats)
    } else {
        let active_fat = bpb.active_fat() as u32;
        let fat_first_sector = (bpb.reserved_sectors()) + active_fat * sectors_per_fat;
        (fat_first_sector, 1)
    };
    DiskSlice::from_sectors(fat_first_sector, sectors_per_fat, mirrors, bpb, io)
}

pub(crate) struct DiskSlice<T> {
    begin: u64,
    size: u64,
    offset: u64,
    mirrors: u8,
    inner: T,
}

impl<T> DiskSlice<T> {
    pub(crate) fn new(begin: u64, size: u64, mirrors: u8, inner: T) -> Self {
        DiskSlice { begin, size, mirrors, inner, offset: 0 }
    }

    fn from_sectors(first_sector: u32, sector_count: u32, mirrors: u8, bpb: &BiosParameterBlock, inner: T) -> Self {
        Self::new(bpb.bytes_from_sectors(first_sector), bpb.bytes_from_sectors(sector_count), mirrors, inner)
    }

    pub(crate) fn abs_pos(&self) -> u64 {
        self.begin + self.offset
    }
}

// Note: derive cannot be used because of invalid bounds. See: https://github.com/rust-lang/rust/issues/26925
impl<T: Clone> Clone for DiskSlice<T> {
    fn clone(&self) -> Self {
        DiskSlice {
            begin: self.begin,
            size: self.size,
            offset: self.offset,
            mirrors: self.mirrors,
            inner: self.inner.clone(),
        }
    }
}

impl<'a, T: Read + Seek> Read for DiskSlice<T> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let offset = self.begin + self.offset;
        let read_size = cmp::min((self.size - self.offset) as usize, buf.len());
        self.inner.seek(SeekFrom::Start(offset))?;
        let size = self.inner.read(&mut buf[..read_size])?;
        self.offset += size as u64;
        Ok(size)
    }
}

impl<'a, T: Write + Seek> Write for DiskSlice<T> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        let offset = self.begin + self.offset;
        let write_size = cmp::min((self.size - self.offset) as usize, buf.len());
        if write_size == 0 {
            return Ok(0);
        }
        // Write data
        for i in 0..self.mirrors {
            self.inner.seek(SeekFrom::Start(offset + i as u64 * self.size))?;
            self.inner.write_all(&buf[..write_size])?;
        }
        self.offset += write_size as u64;
        Ok(write_size)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.inner.flush()
    }
}

impl<'a, T> Seek for DiskSlice<T> {
    fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
        let new_offset = match pos {
            SeekFrom::Current(x) => self.offset as i64 + x,
            SeekFrom::Start(x) => x as i64,
            SeekFrom::End(x) => self.size as i64 + x,
        };
        if new_offset < 0 || new_offset as u64 > self.size {
            Err(io::Error::new(ErrorKind::InvalidInput, "Seek to a negative offset"))
        } else {
            self.offset = new_offset as u64;
            Ok(self.offset)
        }
    }
}

/// An OEM code page encoder/decoder.
///
/// Provides a custom implementation for a short name encoding/decoding.
/// Default implementation changes all non-ASCII characters to the replacement character (U+FFFD).
/// `OemCpConverter` is specified by the `oem_cp_converter` property in `FsOptions` struct.
pub trait OemCpConverter: Debug {
    fn decode(&self, oem_char: u8) -> char;
    fn encode(&self, uni_char: char) -> Option<u8>;
}

#[derive(Debug)]
pub(crate) struct LossyOemCpConverter {
    _dummy: (),
}

impl OemCpConverter for LossyOemCpConverter {
    fn decode(&self, oem_char: u8) -> char {
        if oem_char <= 0x7F {
            oem_char as char
        } else {
            '\u{FFFD}'
        }
    }
    fn encode(&self, uni_char: char) -> Option<u8> {
        if uni_char <= '\x7F' {
            Some(uni_char as u8)
        } else {
            None
        }
    }
}

pub(crate) static LOSSY_OEM_CP_CONVERTER: LossyOemCpConverter = LossyOemCpConverter { _dummy: () };

pub(crate) fn write_zeros<T: ReadWriteSeek>(mut disk: T, mut len: u64) -> io::Result<()> {
    const ZEROS: [u8; 512] = [0u8; 512];
    while len > 0 {
        let write_size = cmp::min(len, ZEROS.len() as u64) as usize;
        disk.write_all(&ZEROS[..write_size])?;
        len -= write_size as u64;
    }
    Ok(())
}

fn write_zeros_until_end_of_sector<T: ReadWriteSeek>(mut disk: T, bytes_per_sector: u16) -> io::Result<()> {
    let pos = disk.seek(SeekFrom::Current(0))?;
    let total_bytes_to_write = bytes_per_sector as u64 - (pos % bytes_per_sector as u64);
    if total_bytes_to_write != bytes_per_sector as u64 {
        write_zeros(disk, total_bytes_to_write)?;
    }
    Ok(())
}

/// A FAT filesystem formatting options
///
/// This struct implements a builder pattern.
/// Options are specified as an argument for `format_volume` function.
#[derive(Default, Debug, Clone)]
pub struct FormatVolumeOptions {
    pub(crate) bytes_per_sector: Option<u16>,
    pub(crate) total_sectors: Option<u32>,
    pub(crate) bytes_per_cluster: Option<u32>,
    pub(crate) fat_type: Option<FatType>,
    pub(crate) max_root_dir_entries: Option<u16>,
    pub(crate) fats: Option<u8>,
    pub(crate) media: Option<u8>,
    pub(crate) sectors_per_track: Option<u16>,
    pub(crate) heads: Option<u16>,
    pub(crate) drive_num: Option<u8>,
    pub(crate) volume_id: Option<u32>,
    pub(crate) volume_label: Option<[u8; 11]>,
}

impl FormatVolumeOptions {
    /// Create options struct for `format_volume` function
    ///
    /// Allows to overwrite many filesystem parameters.
    /// In normal use-case defaults should suffice.
    pub fn new() -> Self {
        FormatVolumeOptions { ..Default::default() }
    }

    /// Set size of cluster in bytes (must be dividable by sector size)
    ///
    /// Cluster size must be a power of two and be greater or equal to sector size.
    /// If option is not specified optimal cluster size is selected based on partition size and
    /// optionally FAT type override (if specified using `fat_type` method).
    pub fn bytes_per_cluster(mut self, bytes_per_cluster: u32) -> Self {
        assert!(bytes_per_cluster.count_ones() == 1 && bytes_per_cluster >= 512, "Invalid bytes_per_cluster");
        self.bytes_per_cluster = Some(bytes_per_cluster);
        self
    }

    /// Set File Allocation Table type
    ///
    /// Option allows to override File Allocation Table (FAT) entry size.
    /// It is unrecommended to set this option unless you know what you are doing.
    /// Note: FAT type is determined from total number of clusters. Changing this option can cause formatting to fail
    /// if the volume cannot be divided into proper number of clusters for selected FAT type.
    pub fn fat_type(mut self, fat_type: FatType) -> Self {
        self.fat_type = Some(fat_type);
        self
    }

    /// Set sector size in bytes
    ///
    /// Sector size must be a power of two and be in range 512 - 4096.
    /// Default is `512`.
    pub fn bytes_per_sector(mut self, bytes_per_sector: u16) -> Self {
        assert!(bytes_per_sector.count_ones() == 1 && bytes_per_sector >= 512, "Invalid bytes_per_sector");
        self.bytes_per_sector = Some(bytes_per_sector);
        self
    }

    /// Set total number of sectors
    ///
    /// If option is not specified total number of sectors is calculated as storage device size divided by sector size.
    pub fn total_sectors(mut self, total_sectors: u32) -> Self {
        self.total_sectors = Some(total_sectors);
        self
    }

    /// Set maximal numer of entries in root directory for FAT12/FAT16 volumes
    ///
    /// Total root directory size should be dividable by sectors size so keep it a multiple of 16 (for default sector
    /// size).
    /// Note: this limit is not used on FAT32 volumes.
    /// Default is `512`.
    pub fn max_root_dir_entries(mut self, max_root_dir_entries: u16) -> Self {
        self.max_root_dir_entries = Some(max_root_dir_entries);
        self
    }

    /// Set number of File Allocation Tables
    ///
    /// The only allowed values are `1` and `2`. If value `2` is used the FAT is mirrored.
    /// Default is `2`.
    pub fn fats(mut self, fats: u8) -> Self {
        assert!(fats >= 1 && fats <= 2, "Invalid number of FATs");
        self.fats = Some(fats);
        self
    }

    /// Set media field for Bios Parameters Block
    ///
    /// Default is `0xF8`.
    pub fn media(mut self, media: u8) -> Self {
        self.media = Some(media);
        self
    }

    /// Set number of physical sectors per track for Bios Parameters Block (INT 13h CHS geometry)
    ///
    /// Default is `0x20`.
    pub fn sectors_per_track(mut self, sectors_per_track: u16) -> Self {
        self.sectors_per_track = Some(sectors_per_track);
        self
    }

    /// Set number of heads for Bios Parameters Block (INT 13h CHS geometry)
    ///
    /// Default is `0x40`.
    pub fn heads(mut self, heads: u16) -> Self {
        self.heads = Some(heads);
        self
    }

    /// Set drive number for Bios Parameters Block
    ///
    /// Default is `0` for FAT12, `0x80` for FAT16/FAT32.
    pub fn drive_num(mut self, drive_num: u8) -> Self {
        self.drive_num = Some(drive_num);
        self
    }

    /// Set volume ID for Bios Parameters Block
    ///
    /// Default is `0x12345678`.
    pub fn volume_id(mut self, volume_id: u32) -> Self {
        self.volume_id = Some(volume_id);
        self
    }

    /// Set volume label
    ///
    /// Default is empty label.
    pub fn volume_label(mut self, volume_label: [u8; 11]) -> Self {
        self.volume_label = Some(volume_label);
        self
    }
}

/// Create FAT filesystem on a disk or partition (format a volume)
///
/// Warning: this function overrides internal FAT filesystem structures and causes a loss of all data on provided
/// partition. Please use it with caution.
/// Only quick formatting is supported. To achieve a full format zero entire partition before calling this function.
/// Supplied `disk` parameter cannot be seeked (internal pointer must be on position 0).
/// To format a fragment of a disk image (e.g. partition) library user should wrap the file struct in a struct
/// limiting access to partition bytes only e.g. `fscommon::StreamSlice`.
pub fn format_volume<T: ReadWriteSeek>(mut disk: T, options: FormatVolumeOptions) -> io::Result<()> {
    trace!("format_volume");
    debug_assert!(disk.seek(SeekFrom::Current(0))? == 0);

    let bytes_per_sector = options.bytes_per_sector.unwrap_or(512);
    let total_sectors = if options.total_sectors.is_none() {
        let total_bytes: u64 = disk.seek(SeekFrom::End(0))?;
        let total_sectors_64 = total_bytes / u64::from(bytes_per_sector);
        disk.seek(SeekFrom::Start(0))?;
        if total_sectors_64 > u64::from(u32::MAX) {
            return Err(Error::new(ErrorKind::Other, "Volume has too many sectors"));
        }
        total_sectors_64 as u32
    } else {
        options.total_sectors.unwrap() // SAFE: checked above
    };

    // Create boot sector, validate and write to storage device
    let (boot, fat_type) = format_boot_sector(&options, total_sectors, bytes_per_sector)?;
    boot.validate()?;
    boot.serialize(&mut disk)?;
    // Make sure entire logical sector is updated (serialize method always writes 512 bytes)
    let bytes_per_sector = boot.bpb.bytes_per_sector;
    write_zeros_until_end_of_sector(&mut disk, bytes_per_sector)?;

    if boot.bpb.is_fat32() {
        // FSInfo sector
        let fs_info_sector = FsInfoSector { free_cluster_count: None, next_free_cluster: None, dirty: false };
        disk.seek(SeekFrom::Start(boot.bpb.bytes_from_sectors(boot.bpb.fs_info_sector())))?;
        fs_info_sector.serialize(&mut disk)?;
        write_zeros_until_end_of_sector(&mut disk, bytes_per_sector)?;

        // backup boot sector
        disk.seek(SeekFrom::Start(boot.bpb.bytes_from_sectors(boot.bpb.backup_boot_sector())))?;
        boot.serialize(&mut disk)?;
        write_zeros_until_end_of_sector(&mut disk, bytes_per_sector)?;
    }

    // format File Allocation Table
    let reserved_sectors = boot.bpb.reserved_sectors();
    let fat_pos = boot.bpb.bytes_from_sectors(reserved_sectors);
    let sectors_per_all_fats = boot.bpb.sectors_per_all_fats();
    disk.seek(SeekFrom::Start(fat_pos))?;
    write_zeros(&mut disk, boot.bpb.bytes_from_sectors(sectors_per_all_fats))?;
    {
        let mut fat_slice = fat_slice(&mut disk, &boot.bpb);
        let sectors_per_fat = boot.bpb.sectors_per_fat();
        let bytes_per_fat = boot.bpb.bytes_from_sectors(sectors_per_fat);
        format_fat(&mut fat_slice, fat_type, boot.bpb.media, bytes_per_fat, boot.bpb.total_clusters())?;
    }

    // init root directory - zero root directory region for FAT12/16 and alloc first root directory cluster for FAT32
    let root_dir_first_sector = reserved_sectors + sectors_per_all_fats;
    let root_dir_sectors = boot.bpb.root_dir_sectors();
    let root_dir_pos = boot.bpb.bytes_from_sectors(root_dir_first_sector);
    disk.seek(SeekFrom::Start(root_dir_pos))?;
    write_zeros(&mut disk, boot.bpb.bytes_from_sectors(root_dir_sectors))?;
    if fat_type == FatType::Fat32 {
        let root_dir_first_cluster = {
            let mut fat_slice = fat_slice(&mut disk, &boot.bpb);
            alloc_cluster(&mut fat_slice, fat_type, None, None, 1)?
        };
        assert!(root_dir_first_cluster == boot.bpb.root_dir_first_cluster);
        let first_data_sector = reserved_sectors + sectors_per_all_fats + root_dir_sectors;
        let root_dir_first_sector =
            first_data_sector + boot.bpb.sectors_from_clusters(root_dir_first_cluster - RESERVED_FAT_ENTRIES);
        let root_dir_pos = boot.bpb.bytes_from_sectors(root_dir_first_sector);
        disk.seek(SeekFrom::Start(root_dir_pos))?;
        write_zeros(&mut disk, boot.bpb.cluster_size() as u64)?;
    }

    // Create volume label directory entry if volume label is specified in options
    if let Some(volume_label) = options.volume_label {
        disk.seek(SeekFrom::Start(root_dir_pos))?;
        let volume_entry = DirFileEntryData::new(volume_label, FileAttributes::VOLUME_ID);
        volume_entry.serialize(&mut disk)?;
    }

    disk.seek(SeekFrom::Start(0))?;
    trace!("format_volume end");
    Ok(())
}