1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
use std::convert::TryFrom;
use std::io::{self, Cursor, Read, Seek, SeekFrom};
use std::iter::{repeat, Iterator, Rev};
use std::marker::PhantomData;
use std::slice::ChunksMut;
use std::{error, fmt, mem};
use std::cmp::{self, Ordering};

use byteorder::{LittleEndian, ReadBytesExt};

use crate::color::ColorType;
use crate::error::{
    DecodingError, ImageError, ImageResult, UnsupportedError, UnsupportedErrorKind,
};
use crate::image::{self, ImageDecoder, ImageDecoderExt, ImageFormat, Progress};

const BITMAPCOREHEADER_SIZE: u32 = 12;
const BITMAPINFOHEADER_SIZE: u32 = 40;
const BITMAPV2HEADER_SIZE: u32 = 52;
const BITMAPV3HEADER_SIZE: u32 = 56;
const BITMAPV4HEADER_SIZE: u32 = 108;
const BITMAPV5HEADER_SIZE: u32 = 124;

static LOOKUP_TABLE_3_BIT_TO_8_BIT: [u8; 8] = [0, 36, 73, 109, 146, 182, 219, 255];
static LOOKUP_TABLE_4_BIT_TO_8_BIT: [u8; 16] = [
    0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255,
];
static LOOKUP_TABLE_5_BIT_TO_8_BIT: [u8; 32] = [
    0, 8, 16, 25, 33, 41, 49, 58, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165, 173,
    181, 189, 197, 206, 214, 222, 230, 239, 247, 255,
];
static LOOKUP_TABLE_6_BIT_TO_8_BIT: [u8; 64] = [
    0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93,
    97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170,
    174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 215, 219, 223, 227, 231, 235, 239, 243, 247,
    251, 255,
];

static R5_G5_B5_COLOR_MASK: Bitfields = Bitfields {
    r: Bitfield { len: 5, shift: 10 },
    g: Bitfield { len: 5, shift: 5 },
    b: Bitfield { len: 5, shift: 0 },
    a: Bitfield { len: 0, shift: 0 },
};
const R8_G8_B8_COLOR_MASK: Bitfields = Bitfields {
    r: Bitfield { len: 8, shift: 24 },
    g: Bitfield { len: 8, shift: 16 },
    b: Bitfield { len: 8, shift: 8 },
    a: Bitfield { len: 0, shift: 0 },
};

const RLE_ESCAPE: u8 = 0;
const RLE_ESCAPE_EOL: u8 = 0;
const RLE_ESCAPE_EOF: u8 = 1;
const RLE_ESCAPE_DELTA: u8 = 2;

/// The maximum width/height the decoder will process.
const MAX_WIDTH_HEIGHT: i32 = 0xFFFF;

#[derive(PartialEq, Copy, Clone)]
enum ImageType {
    Palette,
    RGB16,
    RGB24,
    RGB32,
    RGBA32,
    RLE8,
    RLE4,
    Bitfields16,
    Bitfields32,
}

#[derive(PartialEq)]
enum BMPHeaderType {
    Core,
    Info,
    V2,
    V3,
    V4,
    V5,
}

#[derive(PartialEq)]
enum FormatFullBytes {
    RGB24,
    RGB32,
    RGBA32,
    Format888,
}

enum Chunker<'a> {
    FromTop(ChunksMut<'a, u8>),
    FromBottom(Rev<ChunksMut<'a, u8>>),
}

pub(crate) struct RowIterator<'a> {
    chunks: Chunker<'a>,
}

impl<'a> Iterator for RowIterator<'a> {
    type Item = &'a mut [u8];

    #[inline(always)]
    fn next(&mut self) -> Option<&'a mut [u8]> {
        match self.chunks {
            Chunker::FromTop(ref mut chunks) => chunks.next(),
            Chunker::FromBottom(ref mut chunks) => chunks.next(),
        }
    }
}

/// All errors that can occur when attempting to parse a BMP
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
enum DecoderError {
    // We ran out of data while we still had rows to fill in.
    RleDataTooShort,

    /// The bitfield mask interleaves set and unset bits
    BitfieldMaskNonContiguous,
    /// Bitfield mask invalid (e.g. too long for specified type)
    BitfieldMaskInvalid,
    /// Bitfield (of the specified width – 16- or 32-bit) mask not present
    BitfieldMaskMissing(u32),
    /// Bitfield (of the specified width – 16- or 32-bit) masks not present
    BitfieldMasksMissing(u32),

    /// BMP's "BM" signature wrong or missing
    BmpSignatureInvalid,
    /// More than the exactly one allowed plane specified by the format
    MoreThanOnePlane,
    /// Invalid amount of bits per channel for the specified image type
    InvalidChannelWidth(ChannelWidthError, u16),

    /// The width is negative
    NegativeWidth(i32),
    /// One of the dimensions is larger than a soft limit
    ImageTooLarge(i32, i32),
    /// The height is `i32::min_value()`
    ///
    /// General negative heights specify top-down DIBs
    InvalidHeight,

    /// Specified image type is invalid for top-down BMPs (i.e. is compressed)
    ImageTypeInvalidForTopDown(u32),
    /// Image type not currently recognized by the decoder
    ImageTypeUnknown(u32),

    /// Bitmap header smaller than the core header
    HeaderTooSmall(u32),

    /// The palette is bigger than allowed by the bit count of the BMP
    PaletteSizeExceeded {
        colors_used: u32,
        bit_count: u16,
    }
}

impl fmt::Display for DecoderError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            DecoderError::RleDataTooShort =>
                f.write_str("Not enough RLE data"),
            DecoderError::BitfieldMaskNonContiguous =>
                f.write_str("Non-contiguous bitfield mask"),
            DecoderError::BitfieldMaskInvalid =>
                f.write_str("Invalid bitfield mask"),
            DecoderError::BitfieldMaskMissing(bb) =>
                f.write_fmt(format_args!("Missing {}-bit bitfield mask", bb)),
            DecoderError::BitfieldMasksMissing(bb) =>
                f.write_fmt(format_args!("Missing {}-bit bitfield masks", bb)),
            DecoderError::BmpSignatureInvalid =>
                f.write_str("BMP signature not found"),
            DecoderError::MoreThanOnePlane =>
                f.write_str("More than one plane"),
            DecoderError::InvalidChannelWidth(tp, n) =>
                f.write_fmt(format_args!("Invalid channel bit count for {}: {}", tp, n)),
            DecoderError::NegativeWidth(w) =>
                f.write_fmt(format_args!("Negative width ({})", w)),
            DecoderError::ImageTooLarge(w, h) =>
                f.write_fmt(format_args!("Image too large (one of ({}, {}) > soft limit of {})", w, h, MAX_WIDTH_HEIGHT)),
            DecoderError::InvalidHeight =>
                f.write_str("Invalid height"),
            DecoderError::ImageTypeInvalidForTopDown(tp) =>
                f.write_fmt(format_args!("Invalid image type {} for top-down image.", tp)),
            DecoderError::ImageTypeUnknown(tp) =>
                f.write_fmt(format_args!("Unknown image compression type {}", tp)),
            DecoderError::HeaderTooSmall(s) =>
                f.write_fmt(format_args!("Bitmap header too small ({} bytes)", s)),
            DecoderError::PaletteSizeExceeded { colors_used, bit_count } =>
                f.write_fmt(format_args!("Palette size {} exceeds maximum size for BMP with bit count of {}", colors_used, bit_count)),
        }
    }
}

impl From<DecoderError> for ImageError {
    fn from(e: DecoderError) -> ImageError {
        ImageError::Decoding(DecodingError::new(ImageFormat::Bmp.into(), e))
    }
}

impl error::Error for DecoderError {}

/// Distinct image types whose saved channel width can be invalid
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
enum ChannelWidthError {
    /// RGB
    Rgb,
    /// 8-bit run length encoding
    Rle8,
    /// 4-bit run length encoding
    Rle4,
    /// Bitfields (16- or 32-bit)
    Bitfields,
}

impl fmt::Display for ChannelWidthError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            ChannelWidthError::Rgb => "RGB",
            ChannelWidthError::Rle8 => "RLE8",
            ChannelWidthError::Rle4 => "RLE4",
            ChannelWidthError::Bitfields => "bitfields",
        })
    }
}

/// Convenience function to check if the combination of width, length and number of
/// channels would result in a buffer that would overflow.
fn check_for_overflow(width: i32, length: i32, channels: usize) -> ImageResult<()> {
    num_bytes(width, length, channels)
        .map(|_| ())
        .ok_or_else(||
            ImageError::Unsupported(UnsupportedError::from_format_and_kind(
                ImageFormat::Bmp.into(),
                UnsupportedErrorKind::GenericFeature(format!("Image dimensions ({}x{} w/{} channels) are too large",
                    width, length, channels)))))
}

/// Calculate how many many bytes a buffer holding a decoded image with these properties would
/// require. Returns `None` if the buffer size would overflow or if one of the sizes are negative.
fn num_bytes(width: i32, length: i32, channels: usize) -> Option<usize> {
    if width <= 0 || length <= 0 {
        None
    } else {
        match channels.checked_mul(width as usize) {
            Some(n) => n.checked_mul(length as usize),
            None => None,
        }
    }
}

/// The maximum starting number of pixels in the pixel buffer, might want to tweak this.
///
/// For images that specify large sizes, we don't allocate the full buffer right away
/// to somewhat mitigate trying to make the decoder run out of memory by sending a bogus image.
/// This is somewhat of a workaroud as ideally we would check against the expected file size
/// but that's not possible through the Read and Seek traits alone and would require the encoder
/// to provided with it from the caller.
///
/// NOTE: This is multiplied by 3 or 4 depending on the number of channels to get the maximum
/// starting buffer size. This amounts to about 134 mb for a buffer with 4 channels.
const MAX_INITIAL_PIXELS: usize = 8192 * 4096;

/// Sets all bytes in an mutable iterator over slices of bytes to 0.
fn blank_bytes<'a, T: Iterator<Item = &'a mut [u8]>>(iterator: T) {
    for chunk in iterator {
        for b in chunk {
            *b = 0;
        }
    }
}

/// Extend the buffer to `full_size`, copying existing data to the end of the buffer. Returns slice
/// pointing to the part of the buffer that is not yet filled in.
///
/// If blank is true, the bytes in the new buffer that are not filled in are set to 0.
/// This is used for rle-encoded images as the decoding process for these may not fill in all the
/// pixels.
///
/// As BMP images are usually stored with the rows upside-down we have to write the image data
/// starting at the end of the buffer and thus we have to make sure the existing data is put at the
/// end of the buffer.
#[inline(never)]
#[cold]
fn extend_buffer(buffer: &mut Vec<u8>, full_size: usize, blank: bool) -> &mut [u8] {
    let old_size = buffer.len();
    let extend = full_size - buffer.len();

    buffer.extend(repeat(0xFF).take(extend));
    assert_eq!(buffer.len(), full_size);

    let ret = if extend >= old_size {
        // If the full buffer length is more or equal to twice the initial one, we can simply
        // copy the data in the lower part of the buffer to the end of it and input from there.
        let (new, old) = buffer.split_at_mut(extend);
        old.copy_from_slice(&new[..old_size]);
        new
    } else {
        // If the full size is less than twice the initial buffer, we have to
        // copy in two steps
        let overlap = old_size - extend;

        // First we copy the data that fits into the bit we extended.
        let (lower, upper) = buffer.split_at_mut(old_size);
        upper.copy_from_slice(&lower[overlap..]);

        // Then we slide the data that hasn't been copied yet to the top of the buffer
        let (new, old) = lower.split_at_mut(extend);
        old[..overlap].copy_from_slice(&new[..overlap]);
        new
    };
    if blank {
        for b in ret.iter_mut() {
            *b = 0;
        }
    };
    ret
}

/// Call the provided function on each row of the provided buffer, returning Err if the provided
/// function returns an error, extends the buffer if it's not large enough.
fn with_rows<F>(
    buffer: &mut Vec<u8>,
    width: i32,
    height: i32,
    channels: usize,
    top_down: bool,
    mut func: F,
) -> io::Result<()>
where
    F: FnMut(&mut [u8]) -> io::Result<()>,
{
    // An overflow should already have been checked for when this is called,
    // though we check anyhow, as it somehow seems to increase performance slightly.
    let row_width = channels.checked_mul(width as usize).unwrap();
    let full_image_size = row_width.checked_mul(height as usize).unwrap();

    if !top_down {
        for row in buffer.chunks_mut(row_width).rev() {
            func(row)?;
        }

        // If we need more space, extend the buffer.
        if buffer.len() < full_image_size {
            let new_space = extend_buffer(buffer, full_image_size, false);
            for row in new_space.chunks_mut(row_width).rev() {
                func(row)?;
            }
        }
    } else {
        for row in buffer.chunks_mut(row_width) {
            func(row)?;
        }
        if buffer.len() < full_image_size {
            // If the image is stored in top-down order, we can simply use the extend function
            // from vec to extend the buffer..
            let extend = full_image_size - buffer.len();
            buffer.extend(repeat(0xFF).take(extend));
            let len = buffer.len();
            for row in buffer[len - row_width..].chunks_mut(row_width) {
                func(row)?;
            }
        };
    }
    Ok(())
}

fn set_8bit_pixel_run<'a, T: Iterator<Item = &'a u8>>(
    pixel_iter: &mut ChunksMut<u8>,
    palette: &[(u8, u8, u8)],
    indices: T,
    n_pixels: usize,
) -> bool {
    for idx in indices.take(n_pixels) {
        if let Some(pixel) = pixel_iter.next() {
            let (r, g, b) = palette[*idx as usize];
            pixel[0] = r;
            pixel[1] = g;
            pixel[2] = b;
        } else {
            return false;
        }
    }
    true
}

fn set_4bit_pixel_run<'a, T: Iterator<Item = &'a u8>>(
    pixel_iter: &mut ChunksMut<u8>,
    palette: &[(u8, u8, u8)],
    indices: T,
    mut n_pixels: usize,
) -> bool {
    for idx in indices {
        macro_rules! set_pixel {
            ($i:expr) => {
                if n_pixels == 0 {
                    break;
                }
                if let Some(pixel) = pixel_iter.next() {
                    let (r, g, b) = palette[$i as usize];
                    pixel[0] = r;
                    pixel[1] = g;
                    pixel[2] = b;
                } else {
                    return false;
                }
                n_pixels -= 1;
            };
        }
        set_pixel!(idx >> 4);
        set_pixel!(idx & 0xf);
    }
    true
}

#[rustfmt::skip]
fn set_2bit_pixel_run<'a, T: Iterator<Item = &'a u8>>(
    pixel_iter: &mut ChunksMut<u8>,
    palette: &[(u8, u8, u8)],
    indices: T,
    mut n_pixels: usize,
) -> bool {
    for idx in indices {
        macro_rules! set_pixel {
            ($i:expr) => {
                if n_pixels == 0 {
                    break;
                }
                if let Some(pixel) = pixel_iter.next() {
                    let (r, g, b) = palette[$i as usize];
                    pixel[0] = r;
                    pixel[1] = g;
                    pixel[2] = b;
                } else {
                    return false;
                }
                n_pixels -= 1;
            };
        }
        set_pixel!((idx >> 6) & 0x3u8);
        set_pixel!((idx >> 4) & 0x3u8);
        set_pixel!((idx >> 2) & 0x3u8);
        set_pixel!( idx       & 0x3u8);
    }
    true
}

fn set_1bit_pixel_run<'a, T: Iterator<Item = &'a u8>>(
    pixel_iter: &mut ChunksMut<u8>,
    palette: &[(u8, u8, u8)],
    indices: T,
) {
    for idx in indices {
        let mut bit = 0x80;
        loop {
            if let Some(pixel) = pixel_iter.next() {
                let (r, g, b) = palette[((idx & bit) != 0) as usize];
                pixel[0] = r;
                pixel[1] = g;
                pixel[2] = b;
            } else {
                return;
            }

            bit >>= 1;
            if bit == 0 {
                break;
            }
        }
    }
}

#[derive(PartialEq, Eq)]
struct Bitfield {
    shift: u32,
    len: u32,
}

impl Bitfield {
    fn from_mask(mask: u32, max_len: u32) -> ImageResult<Bitfield> {
        if mask == 0 {
            return Ok(Bitfield { shift: 0, len: 0 });
        }
        let mut shift = mask.trailing_zeros();
        let mut len = (!(mask >> shift)).trailing_zeros();
        if len != mask.count_ones() {
            return Err(DecoderError::BitfieldMaskNonContiguous.into());
        }
        if len + shift > max_len {
            return Err(DecoderError::BitfieldMaskInvalid.into());
        }
        if len > 8 {
            shift += len - 8;
            len = 8;
        }
        Ok(Bitfield { shift, len })
    }

    fn read(&self, data: u32) -> u8 {
        let data = data >> self.shift;
        match self.len {
            1 => ((data & 0b1) * 0xff) as u8,
            2 => ((data & 0b11) * 0x55) as u8,
            3 => LOOKUP_TABLE_3_BIT_TO_8_BIT[(data & 0b00_0111) as usize],
            4 => LOOKUP_TABLE_4_BIT_TO_8_BIT[(data & 0b00_1111) as usize],
            5 => LOOKUP_TABLE_5_BIT_TO_8_BIT[(data & 0b01_1111) as usize],
            6 => LOOKUP_TABLE_6_BIT_TO_8_BIT[(data & 0b11_1111) as usize],
            7 => ((data & 0x7f) << 1 | (data & 0x7f) >> 6) as u8,
            8 => (data & 0xff) as u8,
            _ => panic!(),
        }
    }
}

#[derive(PartialEq, Eq)]
struct Bitfields {
    r: Bitfield,
    g: Bitfield,
    b: Bitfield,
    a: Bitfield,
}

impl Bitfields {
    fn from_mask(
        r_mask: u32,
        g_mask: u32,
        b_mask: u32,
        a_mask: u32,
        max_len: u32,
    ) -> ImageResult<Bitfields> {
        let bitfields = Bitfields {
            r: Bitfield::from_mask(r_mask, max_len)?,
            g: Bitfield::from_mask(g_mask, max_len)?,
            b: Bitfield::from_mask(b_mask, max_len)?,
            a: Bitfield::from_mask(a_mask, max_len)?,
        };
        if bitfields.r.len == 0 || bitfields.g.len == 0 || bitfields.b.len == 0 {
            return Err(DecoderError::BitfieldMaskMissing(max_len).into());
        }
        Ok(bitfields)
    }
}

/// A bmp decoder
pub struct BmpDecoder<R> {
    reader: R,

    bmp_header_type: BMPHeaderType,

    width: i32,
    height: i32,
    data_offset: u64,
    top_down: bool,
    no_file_header: bool,
    add_alpha_channel: bool,
    has_loaded_metadata: bool,
    image_type: ImageType,

    bit_count: u16,
    colors_used: u32,
    palette: Option<Vec<(u8, u8, u8)>>,
    bitfields: Option<Bitfields>,
}

enum RLEInsn {
    EndOfFile,
    EndOfRow,
    Delta(u8, u8),
    Absolute(u8, Vec<u8>),
    PixelRun(u8, u8),
}

struct RLEInsnIterator<'a, R: 'a + Read> {
    r: &'a mut R,
    image_type: ImageType,
}

impl<'a, R: Read> Iterator for RLEInsnIterator<'a, R> {
    type Item = RLEInsn;

    fn next(&mut self) -> Option<RLEInsn> {
        let control_byte = match self.r.read_u8() {
            Ok(b) => b,
            Err(_) => return None,
        };

        match control_byte {
            RLE_ESCAPE => {
                let op = match self.r.read_u8() {
                    Ok(b) => b,
                    Err(_) => return None,
                };

                match op {
                    RLE_ESCAPE_EOL => Some(RLEInsn::EndOfRow),
                    RLE_ESCAPE_EOF => Some(RLEInsn::EndOfFile),
                    RLE_ESCAPE_DELTA => {
                        let xdelta = match self.r.read_u8() {
                            Ok(n) => n,
                            Err(_) => return None,
                        };
                        let ydelta = match self.r.read_u8() {
                            Ok(n) => n,
                            Err(_) => return None,
                        };
                        Some(RLEInsn::Delta(xdelta, ydelta))
                    }
                    _ => {
                        let mut length = op as usize;
                        if self.image_type == ImageType::RLE4 {
                            length = (length + 1) / 2;
                        }
                        length += length & 1;
                        let mut buffer = vec![0; length];
                        match self.r.read_exact(&mut buffer) {
                            Ok(()) => Some(RLEInsn::Absolute(op, buffer)),
                            Err(_) => None,
                        }
                    }
                }
            }
            _ => match self.r.read_u8() {
                Ok(palette_index) => Some(RLEInsn::PixelRun(control_byte, palette_index)),
                Err(_) => None,
            },
        }
    }
}

impl<R: Read + Seek> BmpDecoder<R> {
    /// Create a new decoder that decodes from the stream ```r```
    pub fn new(reader: R) -> ImageResult<BmpDecoder<R>> {
        let mut decoder = BmpDecoder {
            reader,

            bmp_header_type: BMPHeaderType::Info,

            width: 0,
            height: 0,
            data_offset: 0,
            top_down: false,
            no_file_header: false,
            add_alpha_channel: false,
            has_loaded_metadata: false,
            image_type: ImageType::Palette,

            bit_count: 0,
            colors_used: 0,
            palette: None,
            bitfields: None,
        };

        decoder.read_metadata()?;
        Ok(decoder)
    }

    #[cfg(feature = "ico")]
    pub(crate) fn new_with_ico_format(reader: R) -> ImageResult<BmpDecoder<R>> {
        let mut decoder = BmpDecoder {
            reader,

            bmp_header_type: BMPHeaderType::Info,

            width: 0,
            height: 0,
            data_offset: 0,
            top_down: false,
            no_file_header: false,
            add_alpha_channel: false,
            has_loaded_metadata: false,
            image_type: ImageType::Palette,

            bit_count: 0,
            colors_used: 0,
            palette: None,
            bitfields: None,
        };

        decoder.read_metadata_in_ico_format()?;
        Ok(decoder)
    }

    #[cfg(feature = "ico")]
    pub(crate) fn reader(&mut self) -> &mut R {
        &mut self.reader
    }

    fn read_file_header(&mut self) -> ImageResult<()> {
        if self.no_file_header {
            return Ok(());
        }
        let mut signature = [0; 2];
        self.reader.read_exact(&mut signature)?;

        if signature != b"BM"[..] {
            return Err(DecoderError::BmpSignatureInvalid.into());
        }

        // The next 8 bytes represent file size, followed the 4 reserved bytes
        // We're not interesting these values
        self.reader.read_u32::<LittleEndian>()?;
        self.reader.read_u32::<LittleEndian>()?;

        self.data_offset = u64::from(self.reader.read_u32::<LittleEndian>()?);

        Ok(())
    }

    /// Read BITMAPCOREHEADER https://msdn.microsoft.com/en-us/library/vs/alm/dd183372(v=vs.85).aspx
    ///
    /// returns Err if any of the values are invalid.
    fn read_bitmap_core_header(&mut self) -> ImageResult<()> {
        // As height/width values in BMP files with core headers are only 16 bits long,
        // they won't be larger than `MAX_WIDTH_HEIGHT`.
        self.width = i32::from(self.reader.read_u16::<LittleEndian>()?);
        self.height = i32::from(self.reader.read_u16::<LittleEndian>()?);

        check_for_overflow(self.width, self.height, self.num_channels())?;

        // Number of planes (format specifies that this should be 1).
        if self.reader.read_u16::<LittleEndian>()? != 1 {
            return Err(DecoderError::MoreThanOnePlane.into());
        }

        self.bit_count = self.reader.read_u16::<LittleEndian>()?;
        self.image_type = match self.bit_count {
            1 | 4 | 8 => ImageType::Palette,
            24 => ImageType::RGB24,
            _ => return Err(DecoderError::InvalidChannelWidth(ChannelWidthError::Rgb, self.bit_count).into()),
        };

        Ok(())
    }

    /// Read BITMAPINFOHEADER https://msdn.microsoft.com/en-us/library/vs/alm/dd183376(v=vs.85).aspx
    /// or BITMAPV{2|3|4|5}HEADER.
    ///
    /// returns Err if any of the values are invalid.
    fn read_bitmap_info_header(&mut self) -> ImageResult<()> {
        self.width = self.reader.read_i32::<LittleEndian>()?;
        self.height = self.reader.read_i32::<LittleEndian>()?;

        // Width can not be negative
        if self.width < 0 {
            return Err(DecoderError::NegativeWidth(self.width).into());
        } else if self.width > MAX_WIDTH_HEIGHT || self.height > MAX_WIDTH_HEIGHT {
            // Limit very large image sizes to avoid OOM issues. Images with these sizes are
            // unlikely to be valid anyhow.
            return Err(DecoderError::ImageTooLarge(self.width, self.height).into());
        }

        if self.height == i32::min_value() {
            return Err(DecoderError::InvalidHeight.into());
        }

        // A negative height indicates a top-down DIB.
        if self.height < 0 {
            self.height *= -1;
            self.top_down = true;
        }

        check_for_overflow(self.width, self.height, self.num_channels())?;

        // Number of planes (format specifies that this should be 1).
        if self.reader.read_u16::<LittleEndian>()? != 1 {
            return Err(DecoderError::MoreThanOnePlane.into());
        }

        self.bit_count = self.reader.read_u16::<LittleEndian>()?;
        let image_type_u32 = self.reader.read_u32::<LittleEndian>()?;

        // Top-down dibs can not be compressed.
        if self.top_down && image_type_u32 != 0 && image_type_u32 != 3 {
            return Err(DecoderError::ImageTypeInvalidForTopDown(image_type_u32).into());
        }
        self.image_type = match image_type_u32 {
            0 => match self.bit_count {
                1 | 2 | 4 | 8 => ImageType::Palette,
                16 => ImageType::RGB16,
                24 => ImageType::RGB24,
                32 if self.add_alpha_channel => ImageType::RGBA32,
                32 => ImageType::RGB32,
                _ => return Err(DecoderError::InvalidChannelWidth(ChannelWidthError::Rgb, self.bit_count).into()),
            },
            1 => match self.bit_count {
                8 => ImageType::RLE8,
                _ => return Err(DecoderError::InvalidChannelWidth(ChannelWidthError::Rle8, self.bit_count).into()),
            },
            2 => match self.bit_count {
                4 => ImageType::RLE4,
                _ => return Err(DecoderError::InvalidChannelWidth(ChannelWidthError::Rle4, self.bit_count).into()),
            },
            3 => match self.bit_count {
                16 => ImageType::Bitfields16,
                32 => ImageType::Bitfields32,
                _ => return Err(DecoderError::InvalidChannelWidth(ChannelWidthError::Bitfields, self.bit_count).into()),
            },
            4 => {
                // JPEG compression is not implemented yet.
                return Err(ImageError::Unsupported(
                    UnsupportedError::from_format_and_kind(
                        ImageFormat::Bmp.into(),
                        UnsupportedErrorKind::GenericFeature("JPEG compression".to_owned()),
                    ),
                ));
            }
            5 => {
                // PNG compression is not implemented yet.
                return Err(ImageError::Unsupported(
                    UnsupportedError::from_format_and_kind(
                        ImageFormat::Bmp.into(),
                        UnsupportedErrorKind::GenericFeature("PNG compression".to_owned()),
                    ),
                ));
            }
            11 | 12 | 13 => {
                // CMYK types are not implemented yet.
                return Err(ImageError::Unsupported(
                    UnsupportedError::from_format_and_kind(
                        ImageFormat::Bmp.into(),
                        UnsupportedErrorKind::GenericFeature("CMYK format".to_owned()),
                    ),
                ));
            }
            _ => {
                // Unknown compression type.
                return Err(DecoderError::ImageTypeUnknown(image_type_u32).into())
            }
        };

        // The next 12 bytes represent data array size in bytes,
        // followed the horizontal and vertical printing resolutions
        // We will calculate the pixel array size using width & height of image
        // We're not interesting the horz or vert printing resolutions
        self.reader.read_u32::<LittleEndian>()?;
        self.reader.read_u32::<LittleEndian>()?;
        self.reader.read_u32::<LittleEndian>()?;

        self.colors_used = self.reader.read_u32::<LittleEndian>()?;

        // The next 4 bytes represent number of "important" colors
        // We're not interested in this value, so we'll skip it
        self.reader.read_u32::<LittleEndian>()?;

        Ok(())
    }

    fn read_bitmasks(&mut self) -> ImageResult<()> {
        let r_mask = self.reader.read_u32::<LittleEndian>()?;
        let g_mask = self.reader.read_u32::<LittleEndian>()?;
        let b_mask = self.reader.read_u32::<LittleEndian>()?;

        let a_mask = match self.bmp_header_type {
            BMPHeaderType::V3 | BMPHeaderType::V4 | BMPHeaderType::V5 => {
                self.reader.read_u32::<LittleEndian>()?
            }
            _ => 0,
        };

        self.bitfields = match self.image_type {
            ImageType::Bitfields16 => {
                Some(Bitfields::from_mask(r_mask, g_mask, b_mask, a_mask, 16)?)
            }
            ImageType::Bitfields32 => {
                Some(Bitfields::from_mask(r_mask, g_mask, b_mask, a_mask, 32)?)
            }
            _ => None,
        };

        if self.bitfields.is_some() && a_mask != 0 {
            self.add_alpha_channel = true;
        }

        Ok(())
    }

    fn read_metadata(&mut self) -> ImageResult<()> {
        if !self.has_loaded_metadata {
            self.read_file_header()?;
            let bmp_header_offset = self.reader.seek(SeekFrom::Current(0))?;
            let bmp_header_size = self.reader.read_u32::<LittleEndian>()?;
            let bmp_header_end = bmp_header_offset + u64::from(bmp_header_size);

            self.bmp_header_type = match bmp_header_size {
                BITMAPCOREHEADER_SIZE => BMPHeaderType::Core,
                BITMAPINFOHEADER_SIZE => BMPHeaderType::Info,
                BITMAPV2HEADER_SIZE => BMPHeaderType::V2,
                BITMAPV3HEADER_SIZE => BMPHeaderType::V3,
                BITMAPV4HEADER_SIZE => BMPHeaderType::V4,
                BITMAPV5HEADER_SIZE => BMPHeaderType::V5,
                _ if bmp_header_size < BITMAPCOREHEADER_SIZE => {
                    // Size of any valid header types won't be smaller than core header type.
                    return Err(DecoderError::HeaderTooSmall(bmp_header_size).into());
                }
                _ => {
                    return Err(ImageError::Unsupported(
                        UnsupportedError::from_format_and_kind(
                            ImageFormat::Bmp.into(),
                            UnsupportedErrorKind::GenericFeature(format!(
                                "Unknown bitmap header type (size={})",
                                bmp_header_size
                            )),
                        ),
                    ))
                }
            };

            match self.bmp_header_type {
                BMPHeaderType::Core => {
                    self.read_bitmap_core_header()?;
                }
                BMPHeaderType::Info
                | BMPHeaderType::V2
                | BMPHeaderType::V3
                | BMPHeaderType::V4
                | BMPHeaderType::V5 => {
                    self.read_bitmap_info_header()?;
                }
            };

            match self.image_type {
                ImageType::Bitfields16 | ImageType::Bitfields32 => self.read_bitmasks()?,
                _ => {}
            };

            self.reader.seek(SeekFrom::Start(bmp_header_end))?;

            match self.image_type {
                ImageType::Palette | ImageType::RLE4 | ImageType::RLE8 => self.read_palette()?,
                _ => {}
            };

            if self.no_file_header {
                // Use the offset of the end of metadata instead of reading a BMP file header.
                self.data_offset = self.reader.seek(SeekFrom::Current(0))?;
            }

            self.has_loaded_metadata = true;
        }
        Ok(())
    }

    #[cfg(feature = "ico")]
    #[doc(hidden)]
    pub fn read_metadata_in_ico_format(&mut self) -> ImageResult<()> {
        self.no_file_header = true;
        self.add_alpha_channel = true;
        self.read_metadata()?;

        // The height field in an ICO file is doubled to account for the AND mask
        // (whether or not an AND mask is actually present).
        self.height /= 2;
        Ok(())
    }

    fn get_palette_size(&mut self) -> ImageResult<usize> {
        match self.colors_used {
            0 => Ok(1 << self.bit_count),
            _ => {
                if self.colors_used > 1 << self.bit_count {
                    return Err(DecoderError::PaletteSizeExceeded {
                        colors_used: self.colors_used,
                        bit_count: self.bit_count
                    }.into());
                }
                Ok(self.colors_used as usize)
            }
        }
    }

    fn bytes_per_color(&self) -> usize {
        match self.bmp_header_type {
            BMPHeaderType::Core => 3,
            _ => 4,
        }
    }

    fn read_palette(&mut self) -> ImageResult<()> {
        const MAX_PALETTE_SIZE: usize = 256; // Palette indices are u8.

        let bytes_per_color = self.bytes_per_color();
        let palette_size = self.get_palette_size()?;
        let max_length = MAX_PALETTE_SIZE * bytes_per_color;

        let length = palette_size * bytes_per_color;
        let mut buf = Vec::with_capacity(max_length);

        // Resize and read the palette entries to the buffer.
        // We limit the buffer to at most 256 colours to avoid any oom issues as
        // 8-bit images can't reference more than 256 indexes anyhow.
        buf.resize(cmp::min(length, max_length), 0);
        self.reader.by_ref().read_exact(&mut buf)?;

        // Allocate 256 entries even if palette_size is smaller, to prevent corrupt files from
        // causing an out-of-bounds array access.
        match length.cmp(&max_length) {
            Ordering::Greater => {
                self.reader
                    .seek(SeekFrom::Current((length - max_length) as i64))?;
            }
            Ordering::Less => buf.resize(max_length, 0),
            Ordering::Equal => (),
        }

        let p: Vec<(u8, u8, u8)> = (0..MAX_PALETTE_SIZE)
            .map(|i| {
                let b = buf[bytes_per_color * i];
                let g = buf[bytes_per_color * i + 1];
                let r = buf[bytes_per_color * i + 2];
                (r, g, b)
            })
            .collect();

        self.palette = Some(p);

        Ok(())
    }

    fn num_channels(&self) -> usize {
        if self.add_alpha_channel {
            4
        } else {
            3
        }
    }

    /// Create a buffer to hold the decoded pixel data.
    ///
    /// The buffer will be large enough to hold the whole image if it requires less than
    /// `MAX_INITIAL_PIXELS` times the number of channels bytes (adjusted to line up with the
    /// width of a row).
    fn create_pixel_data(&self) -> Vec<u8> {
        let row_width = self.num_channels() * self.width as usize;
        let max_pixels = self.num_channels() * MAX_INITIAL_PIXELS;
        // Make sure the maximum size is whole number of rows.
        let max_starting_size = max_pixels + row_width - (max_pixels % row_width);
        // The buffer has its bytes initially set to 0xFF as the ICO decoder relies on it.
        vec![0xFF; cmp::min(row_width * self.height as usize, max_starting_size)]
    }

    fn rows<'a>(&self, pixel_data: &'a mut [u8]) -> RowIterator<'a> {
        let stride = self.width as usize * self.num_channels();
        if self.top_down {
            RowIterator {
                chunks: Chunker::FromTop(pixel_data.chunks_mut(stride)),
            }
        } else {
            RowIterator {
                chunks: Chunker::FromBottom(pixel_data.chunks_mut(stride).rev()),
            }
        }
    }

    fn read_palettized_pixel_data(&mut self) -> ImageResult<Vec<u8>> {
        let mut pixel_data = self.create_pixel_data();
        let num_channels = self.num_channels();
        let row_byte_length = ((i32::from(self.bit_count) * self.width + 31) / 32 * 4) as usize;
        let mut indices = vec![0; row_byte_length];
        let palette = self.palette.as_ref().unwrap();
        let bit_count = self.bit_count;
        let reader = &mut self.reader;
        let width = self.width as usize;

        reader.seek(SeekFrom::Start(self.data_offset))?;

        with_rows(
            &mut pixel_data,
            self.width,
            self.height,
            num_channels,
            self.top_down,
            |row| {
                reader.read_exact(&mut indices)?;
                let mut pixel_iter = row.chunks_mut(num_channels);
                match bit_count {
                    1 => {
                        set_1bit_pixel_run(&mut pixel_iter, palette, indices.iter());
                    }
                    2 => {
                        set_2bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width);
                    }
                    4 => {
                        set_4bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width);
                    }
                    8 => {
                        set_8bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width);
                    }
                    _ => panic!(),
                };
                Ok(())
            },
        )?;

        Ok(pixel_data)
    }

    fn read_16_bit_pixel_data(&mut self, bitfields: Option<&Bitfields>) -> ImageResult<Vec<u8>> {
        let mut pixel_data = self.create_pixel_data();
        let num_channels = self.num_channels();
        let row_padding_len = self.width as usize % 2 * 2;
        let row_padding = &mut [0; 2][..row_padding_len];
        let bitfields = match bitfields {
            Some(b) => b,
            None => self.bitfields.as_ref().unwrap(),
        };
        let reader = &mut self.reader;

        reader.seek(SeekFrom::Start(self.data_offset))?;

        with_rows(
            &mut pixel_data,
            self.width,
            self.height,
            num_channels,
            self.top_down,
            |row| {
                for pixel in row.chunks_mut(num_channels) {
                    let data = u32::from(reader.read_u16::<LittleEndian>()?);

                    pixel[0] = bitfields.r.read(data);
                    pixel[1] = bitfields.g.read(data);
                    pixel[2] = bitfields.b.read(data);
                    if num_channels == 4 {
                        pixel[3] = bitfields.a.read(data);
                    }
                }
                reader.read_exact(row_padding)
            },
        )?;

        Ok(pixel_data)
    }

    /// Read image data from a reader in 32-bit formats that use bitfields.
    fn read_32_bit_pixel_data(&mut self) -> ImageResult<Vec<u8>> {
        let mut pixel_data = self.create_pixel_data();
        let num_channels = self.num_channels();

        let bitfields = self.bitfields.as_ref().unwrap();

        let reader = &mut self.reader;
        reader.seek(SeekFrom::Start(self.data_offset))?;

        with_rows(
            &mut pixel_data,
            self.width,
            self.height,
            num_channels,
            self.top_down,
            |row| {
                for pixel in row.chunks_mut(num_channels) {
                    let data = reader.read_u32::<LittleEndian>()?;

                    pixel[0] = bitfields.r.read(data);
                    pixel[1] = bitfields.g.read(data);
                    pixel[2] = bitfields.b.read(data);
                    if num_channels == 4 {
                        pixel[3] = bitfields.a.read(data);
                    }
                }
                Ok(())
            },
        )?;

        Ok(pixel_data)
    }

    /// Read image data from a reader where the colours are stored as 8-bit values (24 or 32-bit).
    fn read_full_byte_pixel_data(&mut self, format: &FormatFullBytes) -> ImageResult<Vec<u8>> {
        let mut pixel_data = self.create_pixel_data();
        let num_channels = self.num_channels();
        let row_padding_len = match *format {
            FormatFullBytes::RGB24 => (4 - (self.width as usize * 3) % 4) % 4,
            _ => 0,
        };
        let row_padding = &mut [0; 4][..row_padding_len];

        self.reader.seek(SeekFrom::Start(self.data_offset))?;

        let reader = &mut self.reader;

        with_rows(
            &mut pixel_data,
            self.width,
            self.height,
            num_channels,
            self.top_down,
            |row| {
                for pixel in row.chunks_mut(num_channels) {
                    if *format == FormatFullBytes::Format888 {
                        reader.read_u8()?;
                    }

                    // Read the colour values (b, g, r).
                    // Reading 3 bytes and reversing them is significantly faster than reading one
                    // at a time.
                    reader.read_exact(&mut pixel[0..3])?;
                    pixel[0..3].reverse();

                    if *format == FormatFullBytes::RGB32 {
                        reader.read_u8()?;
                    }

                    // Read the alpha channel if present
                    if *format == FormatFullBytes::RGBA32 {
                        reader.read_exact(&mut pixel[3..4])?;
                    }
                }
                reader.read_exact(row_padding)
            },
        )?;

        Ok(pixel_data)
    }

    fn read_rle_data(&mut self, image_type: ImageType) -> ImageResult<Vec<u8>> {
        // Seek to the start of the actual image data.
        self.reader.seek(SeekFrom::Start(self.data_offset))?;

        let full_image_size =
            num_bytes(self.width, self.height, self.num_channels()).ok_or_else(|| {
                ImageError::Unsupported(UnsupportedError::from_format_and_kind(
                    ImageFormat::Bmp.into(),
                    UnsupportedErrorKind::GenericFeature(format!("Image dimensions ({}x{} w/{} channels) are too large",
                        self.width, self.height, self.num_channels()))))
            })?;
        let mut pixel_data = self.create_pixel_data();
        let (skip_pixels, skip_rows, eof_hit) =
            self.read_rle_data_step(&mut pixel_data, image_type, 0, 0)?;
        // Extend the buffer if there is still data left.
        // If eof_hit is true, it means that we hit an end-of-file marker in the last step and
        // we won't extend the buffer further to avoid small files with a large specified size causing memory issues.
        // This is only a rudimentary check, a file could still create a large buffer, but the
        // file would now have to at least have some data in it.
        if pixel_data.len() < full_image_size && !eof_hit {
            let new = extend_buffer(&mut pixel_data, full_image_size, true);
            self.read_rle_data_step(new, image_type, skip_pixels, skip_rows)?;
        }
        Ok(pixel_data)
    }

    fn read_rle_data_step(
        &mut self,
        mut pixel_data: &mut [u8],
        image_type: ImageType,
        skip_pixels: u8,
        skip_rows: u8,
    ) -> ImageResult<(u8, u8, bool)> {
        let num_channels = self.num_channels();

        let mut delta_rows_left = 0;
        let mut delta_pixels_left = skip_pixels;
        let mut eof_hit = false;

        // Scope the borrowing of pixel_data by the row iterator.
        {
            // Handling deltas in the RLE scheme means that we need to manually
            // iterate through rows and pixels.  Even if we didn't have to handle
            // deltas, we have to ensure that a single runlength doesn't straddle
            // two rows.
            let mut row_iter = self.rows(&mut pixel_data);
            // If we have previously hit a delta value,
            // blank the rows that are to be skipped.
            blank_bytes((&mut row_iter).take(skip_rows.into()));
            let mut insns_iter = RLEInsnIterator {
                r: &mut self.reader,
                image_type,
            };
            let p = self.palette.as_ref().unwrap();

            'row_loop: while let Some(row) = row_iter.next() {
                let mut pixel_iter = row.chunks_mut(num_channels);
                // Blank delta skipped pixels if any.
                blank_bytes((&mut pixel_iter).take(delta_pixels_left.into()));
                delta_pixels_left = 0;

                'rle_loop: loop {
                    if let Some(insn) = insns_iter.next() {
                        match insn {
                            RLEInsn::EndOfFile => {
                                blank_bytes(pixel_iter);
                                blank_bytes(row_iter);
                                eof_hit = true;
                                break 'row_loop;
                            }
                            RLEInsn::EndOfRow => {
                                blank_bytes(pixel_iter);
                                break 'rle_loop;
                            }
                            RLEInsn::Delta(x_delta, y_delta) => {
                                if y_delta > 0 {
                                    for n in 1..y_delta {
                                        if let Some(row) = row_iter.next() {
                                            // The msdn site on bitmap compression doesn't specify
                                            // what happens to the values skipped when encountering
                                            // a delta code, however IE and the windows image
                                            // preview seems to replace them with black pixels,
                                            // so we stick to that.
                                            for b in row {
                                                *b = 0;
                                            }
                                        } else {
                                            delta_pixels_left = x_delta;
                                            // We've reached the end of the buffer.
                                            delta_rows_left = y_delta - n;
                                            break 'row_loop;
                                        }
                                    }
                                }

                                for _ in 0..x_delta {
                                    if let Some(pixel) = pixel_iter.next() {
                                        for b in pixel {
                                            *b = 0;
                                        }
                                    } else {
                                        // We can't go any further in this row.
                                        break;
                                    }
                                }
                            }
                            RLEInsn::Absolute(length, indices) => {
                                // Absolute mode cannot span rows, so if we run
                                // out of pixels to process, we should stop
                                // processing the image.
                                match image_type {
                                    ImageType::RLE8 => {
                                        if !set_8bit_pixel_run(
                                            &mut pixel_iter,
                                            p,
                                            indices.iter(),
                                            length as usize,
                                        ) {
                                            break 'row_loop;
                                        }
                                    }
                                    ImageType::RLE4 => {
                                        if !set_4bit_pixel_run(
                                            &mut pixel_iter,
                                            p,
                                            indices.iter(),
                                            length as usize,
                                        ) {
                                            break 'row_loop;
                                        }
                                    }
                                    _ => panic!(),
                                }
                            }
                            RLEInsn::PixelRun(n_pixels, palette_index) => {
                                // A pixel run isn't allowed to span rows, but we
                                // simply continue on to the next row if we run
                                // out of pixels to set.
                                match image_type {
                                    ImageType::RLE8 => {
                                        if !set_8bit_pixel_run(
                                            &mut pixel_iter,
                                            p,
                                            repeat(&palette_index),
                                            n_pixels as usize,
                                        ) {
                                            break 'rle_loop;
                                        }
                                    }
                                    ImageType::RLE4 => {
                                        if !set_4bit_pixel_run(
                                            &mut pixel_iter,
                                            p,
                                            repeat(&palette_index),
                                            n_pixels as usize,
                                        ) {
                                            break 'rle_loop;
                                        }
                                    }
                                    _ => panic!(),
                                }
                            }
                        }
                    } else {
                        // We ran out of data while we still had rows to fill in.
                        return Err(DecoderError::RleDataTooShort.into());
                    }
                }
            }
        }
        Ok((delta_pixels_left, delta_rows_left, eof_hit))
    }

    /// Read the actual data of the image. This function is deliberately not public because it
    /// cannot be called multiple times without seeking back the underlying reader in between.
    pub(crate) fn read_image_data(&mut self, buf: &mut [u8]) -> ImageResult<()> {
        let data = match self.image_type {
            ImageType::Palette => self.read_palettized_pixel_data(),
            ImageType::RGB16 => self.read_16_bit_pixel_data(Some(&R5_G5_B5_COLOR_MASK)),
            ImageType::RGB24 => self.read_full_byte_pixel_data(&FormatFullBytes::RGB24),
            ImageType::RGB32 => self.read_full_byte_pixel_data(&FormatFullBytes::RGB32),
            ImageType::RGBA32 => self.read_full_byte_pixel_data(&FormatFullBytes::RGBA32),
            ImageType::RLE8 => self.read_rle_data(ImageType::RLE8),
            ImageType::RLE4 => self.read_rle_data(ImageType::RLE4),
            ImageType::Bitfields16 => match self.bitfields {
                Some(_) => self.read_16_bit_pixel_data(None),
                None => Err(DecoderError::BitfieldMasksMissing(16).into()),
            },
            ImageType::Bitfields32 => match self.bitfields {
                Some(R8_G8_B8_COLOR_MASK) => {
                    self.read_full_byte_pixel_data(&FormatFullBytes::Format888)
                }
                Some(_) => self.read_32_bit_pixel_data(),
                None => Err(DecoderError::BitfieldMasksMissing(32).into()),
            },
        }?;

        buf.copy_from_slice(&data);
        Ok(())
    }
}

/// Wrapper struct around a `Cursor<Vec<u8>>`
pub struct BmpReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
impl<R> Read for BmpReader<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.0.read(buf)
    }
    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
        if self.0.position() == 0 && buf.is_empty() {
            mem::swap(buf, self.0.get_mut());
            Ok(buf.len())
        } else {
            self.0.read_to_end(buf)
        }
    }
}

impl<'a, R: 'a + Read + Seek> ImageDecoder<'a> for BmpDecoder<R> {
    type Reader = BmpReader<R>;

    fn dimensions(&self) -> (u32, u32) {
        (self.width as u32, self.height as u32)
    }

    fn color_type(&self) -> ColorType {
        if self.add_alpha_channel {
            ColorType::Rgba8
        } else {
            ColorType::Rgb8
        }
    }

    fn into_reader(self) -> ImageResult<Self::Reader> {
        Ok(BmpReader(Cursor::new(image::decoder_to_vec(self)?), PhantomData))
    }

    fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
        assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
        self.read_image_data(buf)
    }
}

impl<'a, R: 'a + Read + Seek> ImageDecoderExt<'a> for BmpDecoder<R> {
    fn read_rect_with_progress<F: Fn(Progress)>(
        &mut self,
        x: u32,
        y: u32,
        width: u32,
        height: u32,
        buf: &mut [u8],
        progress_callback: F,
    ) -> ImageResult<()> {
        let start = self.reader.seek(SeekFrom::Current(0))?;
        image::load_rect(x, y, width, height, buf, progress_callback, self, |_, _| Ok(()),
                         |s, buf| s.read_image_data(buf))?;
        self.reader.seek(SeekFrom::Start(start))?;
        Ok(())
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_bitfield_len() {
        for len in 1..9 {
            let bitfield = Bitfield { shift: 0, len };
            for i in 0..(1 << len) {
                let read = bitfield.read(i);
                let calc = (i as f64 / ((1 << len) - 1) as f64 * 255f64).round() as u8;
                if read != calc {
                    println!("len:{} i:{} read:{} calc:{}", len, i, read, calc);
                }
                assert_eq!(read, calc);
            }
        }
    }

    #[test]
    fn read_rect() {
        let f = std::fs::File::open("tests/images/bmp/images/Core_8_Bit.bmp").unwrap();
        let mut decoder = super::BmpDecoder::new(f).unwrap();

        let mut buf: Vec<u8> = vec![0; 8 * 8 * 3];
        decoder.read_rect(0, 0, 8, 8, &mut *buf).unwrap();
    }
}