1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
//! Decoding of farbfeld images
//!
//! farbfeld is a lossless image format which is easy to parse, pipe and compress.
//!
//! It has the following format:
//!
//! | Bytes  | Description                                             |
//! |--------|---------------------------------------------------------|
//! | 8      | "farbfeld" magic value                                  |
//! | 4      | 32-Bit BE unsigned integer (width)                      |
//! | 4      | 32-Bit BE unsigned integer (height)                     |
//! | [2222] | 4⋅16-Bit BE unsigned integers [RGBA] / pixel, row-major |
//!
//! The RGB-data should be sRGB for best interoperability and not alpha-premultiplied.
//!
//! # Related Links
//! * <https://tools.suckless.org/farbfeld/> - the farbfeld specification

use std::convert::TryFrom;
use std::i64;
use std::io::{self, Seek, SeekFrom, Read, Write, BufReader, BufWriter};

use byteorder::{BigEndian, ByteOrder, NativeEndian};

use crate::color::ColorType;
use crate::error::{DecodingError, ImageError, ImageResult, UnsupportedError, UnsupportedErrorKind};
use crate::image::{self, ImageDecoder, ImageDecoderExt, ImageEncoder, ImageFormat, Progress};

/// farbfeld Reader
pub struct FarbfeldReader<R: Read> {
    width: u32,
    height: u32,
    inner: BufReader<R>,
    /// Relative to the start of the pixel data
    current_offset: u64,
    cached_byte: Option<u8>,
}

impl<R: Read> FarbfeldReader<R> {
    fn new(reader: R) -> ImageResult<FarbfeldReader<R>> {
        fn read_dimm<R: Read>(from: &mut R) -> ImageResult<u32> {
            let mut buf = [0u8; 4];
            from.read_exact(&mut buf).map_err(|err|
                ImageError::Decoding(DecodingError::new(
                    ImageFormat::Farbfeld.into(),
                    err,
                )))?;
            Ok(BigEndian::read_u32(&buf))
        }

        let mut inner = BufReader::new(reader);

        let mut magic = [0u8; 8];
        inner.read_exact(&mut magic).map_err(|err|
            ImageError::Decoding(DecodingError::new(
                ImageFormat::Farbfeld.into(),
                err,
            )))?;
        if &magic != b"farbfeld" {
            return Err(ImageError::Decoding(DecodingError::new(
                ImageFormat::Farbfeld.into(),
                format!("Invalid magic: {:02x?}", magic),
            )));
        }

        let reader = FarbfeldReader {
            width: read_dimm(&mut inner)?,
            height: read_dimm(&mut inner)?,
            inner,
            current_offset: 0,
            cached_byte: None,
        };
        
        if crate::utils::check_dimension_overflow(
            reader.width,
            reader.height,
            // ColorType is always rgba16
            ColorType::Rgba16.bytes_per_pixel(),
        ) {
            return Err(ImageError::Unsupported(
                UnsupportedError::from_format_and_kind(
                    ImageFormat::Farbfeld.into(),
                    UnsupportedErrorKind::GenericFeature(format!(
                        "Image dimensions ({}x{}) are too large",
                        reader.width, reader.height
                    )),
                ),
            ));
        }

        Ok(reader)
    }
}

impl<R: Read> Read for FarbfeldReader<R> {
    fn read(&mut self, mut buf: &mut [u8]) -> io::Result<usize> {
        let mut bytes_written = 0;
        if let Some(byte) = self.cached_byte.take() {
            buf[0] = byte;
            buf = &mut buf[1..];
            bytes_written = 1;
            self.current_offset += 1;
        }

        if buf.len() == 1 {
            buf[0] = cache_byte(&mut self.inner, &mut self.cached_byte)?;
            bytes_written += 1;
            self.current_offset += 1;
        } else {
            for channel_out in buf.chunks_exact_mut(2) {
                consume_channel(&mut self.inner, channel_out)?;
                bytes_written += 2;
                self.current_offset += 2;
            }
        }

        Ok(bytes_written)
    }
}

impl<R: Read + Seek> Seek for FarbfeldReader<R> {
    fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
        fn parse_offset(original_offset: u64, end_offset: u64, pos: SeekFrom) -> Option<i64> {
            match pos {
                SeekFrom::Start(off) =>
                    i64::try_from(off).ok()?.checked_sub(i64::try_from(original_offset).ok()?),
                SeekFrom::End(off) =>
                    if off < i64::try_from(end_offset).unwrap_or(i64::MAX) {
                        None
                    } else {
                        Some(i64::try_from(end_offset.checked_sub(original_offset)?).ok()? + off)
                    },
                SeekFrom::Current(off) =>
                    if off < i64::try_from(original_offset).unwrap_or(i64::MAX) {
                        None
                    } else {
                        Some(off)
                    },
            }
        }

        let original_offset = self.current_offset;
        let end_offset = self.width as u64 * self.height as u64 * 2;
        let offset_from_current = parse_offset(original_offset, end_offset, pos)
            .ok_or_else(|| io::Error::new(io::ErrorKind::InvalidInput, "invalid seek to a negative or overflowing position"))?;

        // TODO: convert to seek_relative() once that gets stabilised
        self.inner.seek(SeekFrom::Current(offset_from_current))?;
        self.current_offset = if offset_from_current < 0 {
                                  original_offset.checked_sub(offset_from_current.wrapping_neg() as u64)
                              } else {
                                  original_offset.checked_add(offset_from_current as u64)
                              }.expect("This should've been checked above");

        if self.current_offset < end_offset && self.current_offset % 2 == 1 {
            let curr = self.inner.seek(SeekFrom::Current(-1))?;
            cache_byte(&mut self.inner, &mut self.cached_byte)?;
            self.inner.seek(SeekFrom::Start(curr))?;
        } else {
            self.cached_byte = None;
        }

        Ok(original_offset)
    }
}

fn consume_channel<R: Read>(from: &mut R, to: &mut [u8]) -> io::Result<()> {
    let mut ibuf = [0u8; 2];
    from.read_exact(&mut ibuf)?;
    NativeEndian::write_u16(to, BigEndian::read_u16(&ibuf));
    Ok(())
}

fn cache_byte<R: Read>(from: &mut R, cached_byte: &mut Option<u8>) -> io::Result<u8> {
    let mut obuf = [0u8; 2];
    consume_channel(from, &mut obuf)?;
    *cached_byte = Some(obuf[1]);
    Ok(obuf[0])
}

/// farbfeld decoder
pub struct FarbfeldDecoder<R: Read> {
    reader: FarbfeldReader<R>,
}

impl<R: Read> FarbfeldDecoder<R> {
    /// Creates a new decoder that decodes from the stream ```r```
    pub fn new(r: R) -> ImageResult<FarbfeldDecoder<R>> {
        Ok(FarbfeldDecoder { reader: FarbfeldReader::new(r)? })
    }
}

impl<'a, R: 'a + Read> ImageDecoder<'a> for FarbfeldDecoder<R> {
    type Reader = FarbfeldReader<R>;

    fn dimensions(&self) -> (u32, u32) {
        (self.reader.width, self.reader.height)
    }

    fn color_type(&self) -> ColorType {
        ColorType::Rgba16
    }

    fn into_reader(self) -> ImageResult<Self::Reader> {
        Ok(self.reader)
    }

    fn scanline_bytes(&self) -> u64 {
        2
    }
}

impl<'a, R: 'a + Read + Seek> ImageDecoderExt<'a> for FarbfeldDecoder<R> {
    fn read_rect_with_progress<F: Fn(Progress)>(
        &mut self,
        x: u32,
        y: u32,
        width: u32,
        height: u32,
        buf: &mut [u8],
        progress_callback: F,
    ) -> ImageResult<()> {
        // A "scanline" (defined as "shortest non-caching read" in the doc) is just one channel in this case

        let start = self.reader.seek(SeekFrom::Current(0))?;
        image::load_rect(x, y, width, height, buf, progress_callback, self,
                         |s, scanline| s.reader.seek(SeekFrom::Start(scanline * 2)).map(|_| ()),
                         |s, buf| s.reader.read_exact(buf))?;
        self.reader.seek(SeekFrom::Start(start))?;
        Ok(())
    }
}

/// farbfeld encoder
pub struct FarbfeldEncoder<W: Write> {
    w: BufWriter<W>,
}

impl<W: Write> FarbfeldEncoder<W> {
    /// Create a new encoder that writes its output to ```w```
    pub fn new(w: W) -> FarbfeldEncoder<W> {
        FarbfeldEncoder { w: BufWriter::new(w) }
    }

    /// Encodes the image ```data``` (native endian)
    /// that has dimensions ```width``` and ```height```
    pub fn encode(self, data: &[u8], width: u32, height: u32) -> ImageResult<()> {
        self.encode_impl(data, width, height)?;
        Ok(())
    }

    fn encode_impl(mut self, data: &[u8], width: u32, height: u32) -> io::Result<()> {
        self.w.write_all(b"farbfeld")?;

        let mut buf = [0u8; 4];
        BigEndian::write_u32(&mut buf, width);
        self.w.write_all(&buf)?;

        BigEndian::write_u32(&mut buf, height);
        self.w.write_all(&buf)?;

        for channel in data.chunks_exact(2) {
            BigEndian::write_u16(&mut buf, NativeEndian::read_u16(channel));
            self.w.write_all(&buf[..2])?;
        }

        Ok(())
    }
}

impl<W: Write> ImageEncoder for FarbfeldEncoder<W> {
    fn write_image(
        self,
        buf: &[u8],
        width: u32,
        height: u32,
        color_type: ColorType,
    ) -> ImageResult<()> {
        if color_type != ColorType::Rgba16 {
            return Err(ImageError::Unsupported(UnsupportedError::from_format_and_kind(
                ImageFormat::Farbfeld.into(),
                UnsupportedErrorKind::Color(color_type.into()),
            )));
        }

        self.encode(buf, width, height)
    }
}

#[cfg(test)]
mod tests {
    use crate::farbfeld::FarbfeldDecoder;
    use crate::ImageDecoderExt;
    use std::io::{Cursor, Seek, SeekFrom};
    use byteorder::{ByteOrder, NativeEndian};

    static RECTANGLE_IN: &[u8] =     b"farbfeld\
                                       \x00\x00\x00\x02\x00\x00\x00\x03\
                                       \xFF\x01\xFE\x02\xFD\x03\xFC\x04\xFB\x05\xFA\x06\xF9\x07\xF8\x08\
                                       \xF7\x09\xF6\x0A\xF5\x0B\xF4\x0C\xF3\x0D\xF2\x0E\xF1\x0F\xF0\x10\
                                       \xEF\x11\xEE\x12\xED\x13\xEC\x14\xEB\x15\xEA\x16\xE9\x17\xE8\x18";

    #[test]
    fn read_rect_1x2() {
        static RECTANGLE_OUT: &[u16] =                                 &[0xF30D, 0xF20E, 0xF10F, 0xF010,
                                                                         0xEB15, 0xEA16, 0xE917, 0xE818];

        read_rect(1, 1, 1, 2, RECTANGLE_OUT);
    }

    #[test]
    fn read_rect_2x2() {
        static RECTANGLE_OUT: &[u16] = &[0xFF01, 0xFE02, 0xFD03, 0xFC04, 0xFB05, 0xFA06, 0xF907, 0xF808,
                                         0xF709, 0xF60A, 0xF50B, 0xF40C, 0xF30D, 0xF20E, 0xF10F, 0xF010];

        read_rect(0, 0, 2, 2, RECTANGLE_OUT);
    }

    #[test]
    fn read_rect_2x1() {
        static RECTANGLE_OUT: &[u16] = &[0xEF11, 0xEE12, 0xED13, 0xEC14, 0xEB15, 0xEA16, 0xE917, 0xE818];

        read_rect(0, 2, 2, 1, RECTANGLE_OUT);
    }

    #[test]
    fn read_rect_2x3() {
        static RECTANGLE_OUT: &[u16] = &[0xFF01, 0xFE02, 0xFD03, 0xFC04, 0xFB05, 0xFA06, 0xF907, 0xF808,
                                         0xF709, 0xF60A, 0xF50B, 0xF40C, 0xF30D, 0xF20E, 0xF10F, 0xF010,
                                         0xEF11, 0xEE12, 0xED13, 0xEC14, 0xEB15, 0xEA16, 0xE917, 0xE818];

        read_rect(0, 0, 2, 3, RECTANGLE_OUT);
    }

    #[test]
    fn read_rect_in_stream() {
        static RECTANGLE_OUT: &[u16] = &[0xEF11, 0xEE12, 0xED13, 0xEC14];

        let mut input = vec![];
        input.extend_from_slice(b"This is a 31-byte-long prologue");
        input.extend_from_slice(RECTANGLE_IN);
        let mut input_cur = Cursor::new(input);
        input_cur.seek(SeekFrom::Start(31)).unwrap();

        let mut out_buf = [0u8; 64];
        FarbfeldDecoder::new(input_cur)
            .unwrap()
            .read_rect(0, 2, 1, 1, &mut out_buf)
            .unwrap();
        let exp = degenerate_pixels(RECTANGLE_OUT);
        assert_eq!(&out_buf[..exp.len()], &exp[..]);
    }

    #[test]
    fn dimension_overflow() {        
        let header = b"farbfeld\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF";
        
        assert!(FarbfeldDecoder::new(Cursor::new(header)).is_err());
    }

    fn read_rect(x: u32, y: u32, width: u32, height: u32, exp_wide: &[u16]) {
        let mut out_buf = [0u8; 64];
        FarbfeldDecoder::new(Cursor::new(RECTANGLE_IN))
            .unwrap()
            .read_rect(x, y, width, height, &mut out_buf)
            .unwrap();
        let exp = degenerate_pixels(exp_wide);
        assert_eq!(&out_buf[..exp.len()], &exp[..]);
    }

    fn degenerate_pixels(exp_wide: &[u16]) -> Vec<u8> {
        let mut exp = vec![0u8; exp_wide.len() * 2];
        NativeEndian::write_u16_into(exp_wide, &mut exp);
        exp
    }
}