1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
use crate::read_u8;
use error::{Error, Result, UnsupportedFeature};
use huffman::{fill_default_mjpeg_tables, HuffmanDecoder, HuffmanTable};
use marker::Marker;
use parser::{AdobeColorTransform, AppData, CodingProcess, Component, Dimensions, EntropyCoding, FrameInfo,
             parse_app, parse_com, parse_dht, parse_dqt, parse_dri, parse_sof, parse_sos, IccChunk,
             ScanInfo};
use upsampler::Upsampler;
use std::cmp;
use std::io::Read;
use std::mem;
use std::ops::Range;
use std::sync::Arc;
use worker::{RowData, PlatformWorker, Worker};

pub const MAX_COMPONENTS: usize = 4;

static UNZIGZAG: [u8; 64] = [
     0,  1,  8, 16,  9,  2,  3, 10,
    17, 24, 32, 25, 18, 11,  4,  5,
    12, 19, 26, 33, 40, 48, 41, 34,
    27, 20, 13,  6,  7, 14, 21, 28,
    35, 42, 49, 56, 57, 50, 43, 36,
    29, 22, 15, 23, 30, 37, 44, 51,
    58, 59, 52, 45, 38, 31, 39, 46,
    53, 60, 61, 54, 47, 55, 62, 63,
];

/// An enumeration over combinations of color spaces and bit depths a pixel can have.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum PixelFormat {
    /// Luminance (grayscale), 8 bits
    L8,
    /// RGB, 8 bits per channel
    RGB24,
    /// CMYK, 8 bits per channel
    CMYK32,
}

impl PixelFormat {
    /// Determine the size in bytes of each pixel in this format
    pub fn pixel_bytes(&self) -> usize {
        match self {
            PixelFormat::L8 => 1,
            PixelFormat::RGB24 => 3,
            PixelFormat::CMYK32 => 4,
        }
    }
}

/// Represents metadata of an image.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ImageInfo {
    /// The width of the image, in pixels.
    pub width: u16,
    /// The height of the image, in pixels.
    pub height: u16,
    /// The pixel format of the image.
    pub pixel_format: PixelFormat,
}

/// JPEG decoder
pub struct Decoder<R> {
    reader: R,

    frame: Option<FrameInfo>,
    dc_huffman_tables: Vec<Option<HuffmanTable>>,
    ac_huffman_tables: Vec<Option<HuffmanTable>>,
    quantization_tables: [Option<Arc<[u16; 64]>>; 4],

    restart_interval: u16,
    color_transform: Option<AdobeColorTransform>,
    is_jfif: bool,
    is_mjpeg: bool,

    icc_markers: Vec<IccChunk>,

    // Used for progressive JPEGs.
    coefficients: Vec<Vec<i16>>,
    // Bitmask of which coefficients has been completely decoded.
    coefficients_finished: [u64; MAX_COMPONENTS],
}

impl<R: Read> Decoder<R> {
    /// Creates a new `Decoder` using the reader `reader`.
    pub fn new(reader: R) -> Decoder<R> {
        Decoder {
            reader: reader,
            frame: None,
            dc_huffman_tables: vec![None, None, None, None],
            ac_huffman_tables: vec![None, None, None, None],
            quantization_tables: [None, None, None, None],
            restart_interval: 0,
            color_transform: None,
            is_jfif: false,
            is_mjpeg: false,
            icc_markers: Vec::new(),
            coefficients: Vec::new(),
            coefficients_finished: [0; MAX_COMPONENTS],
        }
    }

    /// Returns metadata about the image.
    ///
    /// The returned value will be `None` until a call to either `read_info` or `decode` has
    /// returned `Ok`.
    pub fn info(&self) -> Option<ImageInfo> {
        match self.frame {
            Some(ref frame) => {
                let pixel_format = match frame.components.len() {
                    1 => PixelFormat::L8,
                    3 => PixelFormat::RGB24,
                    4 => PixelFormat::CMYK32,
                    _ => panic!(),
                };

                Some(ImageInfo {
                    width: frame.output_size.width,
                    height: frame.output_size.height,
                    pixel_format: pixel_format,
                })
            },
            None => None,
        }
    }

    /// Returns the embeded icc profile if the image contains one.
    pub fn icc_profile(&self) -> Option<Vec<u8>> {
        let mut marker_present: [Option<&IccChunk>; 256] = [None; 256];
        let num_markers = self.icc_markers.len();
        if num_markers == 0 && num_markers < 256 {
            return None;
        }
        // check the validity of the markers
        for chunk in &self.icc_markers {
            if usize::from(chunk.num_markers) != num_markers {
                // all the lengths must match
                return None;
            }
            if chunk.seq_no == 0 {
                return None;
            }
            if marker_present[usize::from(chunk.seq_no)].is_some() {
                // duplicate seq_no
                return None;
            } else {
                marker_present[usize::from(chunk.seq_no)] = Some(chunk);
            }
        }

        // assemble them together by seq_no failing if any are missing
        let mut data = Vec::new();
        // seq_no's start at 1
        for &chunk in marker_present.get(1..=num_markers)? {
            data.extend_from_slice(&chunk?.data);
        }
        Some(data)
    }

    /// Tries to read metadata from the image without decoding it.
    ///
    /// If successful, the metadata can be obtained using the `info` method.
    pub fn read_info(&mut self) -> Result<()> {
        self.decode_internal(true).map(|_| ())
    }

    /// Configure the decoder to scale the image during decoding.
    ///
    /// This efficiently scales the image by the smallest supported scale
    /// factor that produces an image larger than or equal to the requested
    /// size in at least one axis. The currently implemented scale factors
    /// are 1/8, 1/4, 1/2 and 1.
    ///
    /// To generate a thumbnail of an exact size, pass the desired size and
    /// then scale to the final size using a traditional resampling algorithm.
    pub fn scale(&mut self, requested_width: u16, requested_height: u16) -> Result<(u16, u16)> {
        self.read_info()?;
        let frame = self.frame.as_mut().unwrap();
        let idct_size = crate::idct::choose_idct_size(frame.image_size, Dimensions{ width: requested_width, height: requested_height });
        frame.update_idct_size(idct_size)?;
        Ok((frame.output_size.width, frame.output_size.height))
    }

    /// Decodes the image and returns the decoded pixels if successful.
    pub fn decode(&mut self) -> Result<Vec<u8>> {
        self.decode_internal(false)
    }

    fn decode_internal(&mut self, stop_after_metadata: bool) -> Result<Vec<u8>> {
        if stop_after_metadata && self.frame.is_some() {
            // The metadata has already been read.
            return Ok(Vec::new());
        }
        else if self.frame.is_none() && (read_u8(&mut self.reader)? != 0xFF || Marker::from_u8(read_u8(&mut self.reader)?) != Some(Marker::SOI)) {
            return Err(Error::Format("first two bytes are not an SOI marker".to_owned()));
        }

        let mut previous_marker = Marker::SOI;
        let mut pending_marker = None;
        let mut worker = None;
        let mut scans_processed = 0;
        let mut planes = vec![Vec::new(); self.frame.as_ref().map_or(0, |frame| frame.components.len())];

        loop {
            let marker = match pending_marker.take() {
                Some(m) => m,
                None => self.read_marker()?,
            };

            match marker {
                // Frame header
                Marker::SOF(..) => {
                    // Section 4.10
                    // "An image contains only one frame in the cases of sequential and
                    //  progressive coding processes; an image contains multiple frames for the
                    //  hierarchical mode."
                    if self.frame.is_some() {
                        return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
                    }

                    let frame = parse_sof(&mut self.reader, marker)?;
                    let component_count = frame.components.len();

                    if frame.is_differential {
                        return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
                    }
                    if frame.coding_process == CodingProcess::Lossless {
                        return Err(Error::Unsupported(UnsupportedFeature::Lossless));
                    }
                    if frame.entropy_coding == EntropyCoding::Arithmetic {
                        return Err(Error::Unsupported(UnsupportedFeature::ArithmeticEntropyCoding));
                    }
                    if frame.precision != 8 {
                        return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision(frame.precision)));
                    }
                    if component_count != 1 && component_count != 3 && component_count != 4 {
                        return Err(Error::Unsupported(UnsupportedFeature::ComponentCount(component_count as u8)));
                    }

                    // Make sure we support the subsampling ratios used.
                    let _ = Upsampler::new(&frame.components, frame.image_size.width, frame.image_size.height)?;

                    self.frame = Some(frame);

                    if stop_after_metadata {
                        return Ok(Vec::new());
                    }

                    planes = vec![Vec::new(); component_count];
                },

                // Scan header
                Marker::SOS => {
                    if self.frame.is_none() {
                        return Err(Error::Format("scan encountered before frame".to_owned()));
                    }
                    if worker.is_none() {
                        worker = Some(PlatformWorker::new()?);
                    }

                    let frame = self.frame.clone().unwrap();
                    let scan = parse_sos(&mut self.reader, &frame)?;

                    if frame.coding_process == CodingProcess::DctProgressive && self.coefficients.is_empty() {
                        self.coefficients = frame.components.iter().map(|c| {
                            let block_count = c.block_size.width as usize * c.block_size.height as usize;
                            vec![0; block_count * 64]
                        }).collect();
                    }

                    // This was previously buggy, so let's explain the log here a bit. When a
                    // progressive frame is encoded then the coefficients (DC, AC) of each
                    // component (=color plane) can be split amongst scans. In particular it can
                    // happen or at least occurs in the wild that a scan contains coefficient 0 of
                    // all components. If now one but not all components had all other coefficients
                    // delivered in previous scans then such a scan contains all components but
                    // completes only some of them! (This is technically NOT permitted for all
                    // other coefficients as the standard dictates that scans with coefficients
                    // other than the 0th must only contain ONE component so we would either
                    // complete it or not. We may want to detect and error in case more component
                    // are part of a scan than allowed.) What a weird edge case.
                    //
                    // But this means we track precisely which components get completed here.
                    let mut finished = [false; MAX_COMPONENTS];

                    if scan.successive_approximation_low == 0 {
                        for (&i, component_finished) in scan.component_indices.iter().zip(&mut finished) {
                            if self.coefficients_finished[i] == !0 {
                                continue;
                            }
                            for j in scan.spectral_selection.clone() {
                                self.coefficients_finished[i] |= 1 << j;
                            }
                            if self.coefficients_finished[i] == !0 {
                                *component_finished = true;
                            }
                        }
                    }

                    let (marker, data) = self.decode_scan(&frame, &scan, worker.as_mut().unwrap(), &finished)?;

                    if let Some(data) = data {
                        for (i, plane) in data.into_iter().enumerate().filter(|&(_, ref plane)| !plane.is_empty()) {
                            if self.coefficients_finished[i] == !0 {
                                planes[i] = plane;
                            }
                        }
                    }

                    pending_marker = marker;
                    scans_processed += 1;
                },

                // Table-specification and miscellaneous markers
                // Quantization table-specification
                Marker::DQT => {
                    let tables = parse_dqt(&mut self.reader)?;

                    for (i, &table) in tables.iter().enumerate() {
                        if let Some(table) = table {
                            let mut unzigzagged_table = [0u16; 64];

                            for j in 0 .. 64 {
                                unzigzagged_table[UNZIGZAG[j] as usize] = table[j];
                            }

                            self.quantization_tables[i] = Some(Arc::new(unzigzagged_table));
                        }
                    }
                },
                // Huffman table-specification
                Marker::DHT => {
                    let is_baseline = self.frame.as_ref().map(|frame| frame.is_baseline);
                    let (dc_tables, ac_tables) = parse_dht(&mut self.reader, is_baseline)?;

                    let current_dc_tables = mem::replace(&mut self.dc_huffman_tables, vec![]);
                    self.dc_huffman_tables = dc_tables.into_iter()
                                                      .zip(current_dc_tables.into_iter())
                                                      .map(|(a, b)| a.or(b))
                                                      .collect();

                    let current_ac_tables = mem::replace(&mut self.ac_huffman_tables, vec![]);
                    self.ac_huffman_tables = ac_tables.into_iter()
                                                      .zip(current_ac_tables.into_iter())
                                                      .map(|(a, b)| a.or(b))
                                                      .collect();
                },
                // Arithmetic conditioning table-specification
                Marker::DAC => return Err(Error::Unsupported(UnsupportedFeature::ArithmeticEntropyCoding)),
                // Restart interval definition
                Marker::DRI => self.restart_interval = parse_dri(&mut self.reader)?,
                // Comment
                Marker::COM => {
                    let _comment = parse_com(&mut self.reader)?;
                },
                // Application data
                Marker::APP(..) => {
                    if let Some(data) = parse_app(&mut self.reader, marker)? {
                        match data {
                            AppData::Adobe(color_transform) => self.color_transform = Some(color_transform),
                            AppData::Jfif => {
                                // From the JFIF spec:
                                // "The APP0 marker is used to identify a JPEG FIF file.
                                //     The JPEG FIF APP0 marker is mandatory right after the SOI marker."
                                // Some JPEGs in the wild does not follow this though, so we allow
                                // JFIF headers anywhere APP0 markers are allowed.
                                /*
                                if previous_marker != Marker::SOI {
                                    return Err(Error::Format("the JFIF APP0 marker must come right after the SOI marker".to_owned()));
                                }
                                */

                                self.is_jfif = true;
                            },
                            AppData::Avi1 => self.is_mjpeg = true,
                            AppData::Icc(icc) => self.icc_markers.push(icc),
                        }
                    }
                },
                // Restart
                Marker::RST(..) => {
                    // Some encoders emit a final RST marker after entropy-coded data, which
                    // decode_scan does not take care of. So if we encounter one, we ignore it.
                    if previous_marker != Marker::SOS {
                        return Err(Error::Format("RST found outside of entropy-coded data".to_owned()));
                    }
                },

                // Define number of lines
                Marker::DNL => {
                    // Section B.2.1
                    // "If a DNL segment (see B.2.5) is present, it shall immediately follow the first scan."
                    if previous_marker != Marker::SOS || scans_processed != 1 {
                        return Err(Error::Format("DNL is only allowed immediately after the first scan".to_owned()));
                    }

                    return Err(Error::Unsupported(UnsupportedFeature::DNL));
                },

                // Hierarchical mode markers
                Marker::DHP | Marker::EXP => return Err(Error::Unsupported(UnsupportedFeature::Hierarchical)),

                // End of image
                Marker::EOI => break,

                _ => return Err(Error::Format(format!("{:?} marker found where not allowed", marker))),
            }

            previous_marker = marker;
        }

        if self.frame.is_none() {
            return Err(Error::Format("end of image encountered before frame".to_owned()));
        }

        let frame = self.frame.as_ref().unwrap();

        // If we're decoding a progressive jpeg and a component is unfinished, render what we've got
        if frame.coding_process == CodingProcess::DctProgressive && self.coefficients.len() == frame.components.len() {
            for (i, component) in frame.components.iter().enumerate() {
                // Only dealing with unfinished components
                if self.coefficients_finished[i] == !0 {
                    continue;
                }

                let quantization_table = match self.quantization_tables[component.quantization_table_index].clone() {
                    Some(quantization_table) => quantization_table,
                    None => continue,
                };

                // Get the worker prepared
                if worker.is_none() {
                    worker = Some(PlatformWorker::new()?);
                }
                let worker = worker.as_mut().unwrap();
                let row_data = RowData {
                    index: i,
                    component: component.clone(),
                    quantization_table,
                };
                worker.start(row_data)?;

                // Send the rows over to the worker and collect the result
                let coefficients_per_mcu_row = usize::from(component.block_size.width) * usize::from(component.vertical_sampling_factor) * 64;
                for mcu_y in 0..frame.mcu_size.height {
                    let row_coefficients = {
                        let offset = usize::from(mcu_y) * coefficients_per_mcu_row;
                        self.coefficients[i][offset .. offset + coefficients_per_mcu_row].to_vec()
                    };

                    worker.append_row((i, row_coefficients))?;
                }
                planes[i] = worker.get_result(i)?;
            }
        }

        compute_image(&frame.components, planes, frame.output_size, self.is_jfif, self.color_transform)
    }

    fn read_marker(&mut self) -> Result<Marker> {
        loop {
            // This should be an error as the JPEG spec doesn't allow extraneous data between marker segments.
            // libjpeg allows this though and there are images in the wild utilising it, so we are
            // forced to support this behavior.
            // Sony Ericsson P990i is an example of a device which produce this sort of JPEGs.
            while read_u8(&mut self.reader)? != 0xFF {}

            // Section B.1.1.2
            // All markers are assigned two-byte codes: an X’FF’ byte followed by a
            // byte which is not equal to 0 or X’FF’ (see Table B.1). Any marker may
            // optionally be preceded by any number of fill bytes, which are bytes
            // assigned code X’FF’.
            let mut byte = read_u8(&mut self.reader)?;

            // Section B.1.1.2
            // "Any marker may optionally be preceded by any number of fill bytes, which are bytes assigned code X’FF’."
            while byte == 0xFF {
                byte = read_u8(&mut self.reader)?;
            }

            if byte != 0x00 && byte != 0xFF {
                return Ok(Marker::from_u8(byte).unwrap());
            }
        }
    }

    fn decode_scan(&mut self,
                   frame: &FrameInfo,
                   scan: &ScanInfo,
                   worker: &mut PlatformWorker,
                   finished: &[bool; MAX_COMPONENTS])
                   -> Result<(Option<Marker>, Option<Vec<Vec<u8>>>)> {
        assert!(scan.component_indices.len() <= MAX_COMPONENTS);

        let components: Vec<Component> = scan.component_indices.iter()
                                                               .map(|&i| frame.components[i].clone())
                                                               .collect();

        // Verify that all required quantization tables has been set.
        if components.iter().any(|component| self.quantization_tables[component.quantization_table_index].is_none()) {
            return Err(Error::Format("use of unset quantization table".to_owned()));
        }

        if self.is_mjpeg {
            fill_default_mjpeg_tables(scan, &mut self.dc_huffman_tables, &mut self.ac_huffman_tables);
        }

        // Verify that all required huffman tables has been set.
        if scan.spectral_selection.start == 0 &&
                scan.dc_table_indices.iter().any(|&i| self.dc_huffman_tables[i].is_none()) {
            return Err(Error::Format("scan makes use of unset dc huffman table".to_owned()));
        }
        if scan.spectral_selection.end > 1 &&
                scan.ac_table_indices.iter().any(|&i| self.ac_huffman_tables[i].is_none()) {
            return Err(Error::Format("scan makes use of unset ac huffman table".to_owned()));
        }

        // Prepare the worker thread for the work to come.
        for (i, component) in components.iter().enumerate() {
            if finished[i] {
                let row_data = RowData {
                    index: i,
                    component: component.clone(),
                    quantization_table: self.quantization_tables[component.quantization_table_index].clone().unwrap(),
                };

                worker.start(row_data)?;
            }
        }

        let is_progressive = frame.coding_process == CodingProcess::DctProgressive;
        let is_interleaved = components.len() > 1;
        let mut dummy_block = [0i16; 64];
        let mut huffman = HuffmanDecoder::new();
        let mut dc_predictors = [0i16; MAX_COMPONENTS];
        let mut mcus_left_until_restart = self.restart_interval;
        let mut expected_rst_num = 0;
        let mut eob_run = 0;
        let mut mcu_row_coefficients = Vec::with_capacity(components.len());

        if !is_progressive {
            for (_, component) in components.iter().enumerate().filter(|&(i, _)| finished[i]) {
                let coefficients_per_mcu_row = component.block_size.width as usize * component.vertical_sampling_factor as usize * 64;
                mcu_row_coefficients.push(vec![0i16; coefficients_per_mcu_row]);
            }
        }

        // 4.8.2
        // When reading from the stream, if the data is non-interleaved then an MCU consists of
        // exactly one block (effectively a 1x1 sample).
        let (mcu_horizontal_samples, mcu_vertical_samples) = if is_interleaved {
            let horizontal = components.iter().map(|component| component.horizontal_sampling_factor as u16).collect::<Vec<_>>();
            let vertical = components.iter().map(|component| component.vertical_sampling_factor as u16).collect::<Vec<_>>();
            (horizontal, vertical)
        } else {
            (vec![1], vec![1])
        };

        // This also affects how many MCU values we read from stream. If it's a non-interleaved stream,
        // the MCUs will be exactly the block count.
        let (max_mcu_x, max_mcu_y) = if is_interleaved {
            (frame.mcu_size.width, frame.mcu_size.height)
        } else {
            (components[0].block_size.width, components[0].block_size.height)
        };

        for mcu_y in 0..max_mcu_y {
            if mcu_y * 8 >= frame.image_size.height {
                break;
            }

            for mcu_x in 0..max_mcu_x {
                if mcu_x * 8 >= frame.image_size.width {
                    break;
                }

                if self.restart_interval > 0 {
                    if mcus_left_until_restart == 0 {
                        match huffman.take_marker(&mut self.reader)? {
                            Some(Marker::RST(n)) => {
                                if n != expected_rst_num {
                                    return Err(Error::Format(format!("found RST{} where RST{} was expected", n, expected_rst_num)));
                                }

                                huffman.reset();
                                // Section F.2.1.3.1
                                dc_predictors = [0i16; MAX_COMPONENTS];
                                // Section G.1.2.2
                                eob_run = 0;

                                expected_rst_num = (expected_rst_num + 1) % 8;
                                mcus_left_until_restart = self.restart_interval;
                            },
                            Some(marker) => return Err(Error::Format(format!("found marker {:?} inside scan where RST{} was expected", marker, expected_rst_num))),
                            None => return Err(Error::Format(format!("no marker found where RST{} was expected", expected_rst_num))),
                        }
                    }

                    mcus_left_until_restart -= 1;
                }

                for (i, component) in components.iter().enumerate() {
                    for v_pos in 0..mcu_vertical_samples[i] {
                        for h_pos in 0..mcu_horizontal_samples[i] {
                            let coefficients = if is_progressive {
                                let block_y = (mcu_y * mcu_vertical_samples[i] + v_pos) as usize;
                                let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
                                let block_offset = (block_y * component.block_size.width as usize + block_x) * 64;
                                &mut self.coefficients[scan.component_indices[i]][block_offset..block_offset + 64]
                            } else if finished[i] {
                                // Because the worker thread operates in batches as if we were always interleaved, we
                                // need to distinguish between a single-shot buffer and one that's currently in process
                                // (for a non-interleaved) stream
                                let mcu_batch_current_row = if is_interleaved {
                                    0
                                } else {
                                    mcu_y % component.vertical_sampling_factor as u16
                                };

                                let block_y = (mcu_batch_current_row * mcu_vertical_samples[i] + v_pos) as usize;
                                let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
                                let block_offset = (block_y * component.block_size.width as usize + block_x) * 64;
                                &mut mcu_row_coefficients[i][block_offset..block_offset + 64]
                            } else {
                                &mut dummy_block[..]
                            };

                            if scan.successive_approximation_high == 0 {
                                decode_block(&mut self.reader,
                                            coefficients,
                                            &mut huffman,
                                            self.dc_huffman_tables[scan.dc_table_indices[i]].as_ref(),
                                            self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
                                            scan.spectral_selection.clone(),
                                            scan.successive_approximation_low,
                                            &mut eob_run,
                                            &mut dc_predictors[i])?;
                            }
                            else {
                                decode_block_successive_approximation(&mut self.reader,
                                                                    coefficients,
                                                                    &mut huffman,
                                                                    self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
                                                                    scan.spectral_selection.clone(),
                                                                    scan.successive_approximation_low,
                                                                    &mut eob_run)?;
                            }
                        }
                    }
                }
            }

            // Send the coefficients from this MCU row to the worker thread for dequantization and idct.
            for (i, component) in components.iter().enumerate() {
                if finished[i] {
                    // In the event of non-interleaved streams, if we're still building the buffer out,
                    // keep going; don't send it yet. We also need to ensure we don't skip over the last
                    // row(s) of the image.
                    if !is_interleaved && (mcu_y + 1) * 8 < frame.image_size.height {
                        if (mcu_y + 1) % component.vertical_sampling_factor as u16 > 0 {
                            continue;
                        }
                    }

                    let coefficients_per_mcu_row = component.block_size.width as usize * component.vertical_sampling_factor as usize * 64;

                    let row_coefficients = if is_progressive {
                        // Because non-interleaved streams will have multiple MCU rows concatenated together,
                        // the row for calculating the offset is different.
                        let worker_mcu_y = if is_interleaved {
                            mcu_y
                        } else {
                            // Explicitly doing floor-division here
                            mcu_y / component.vertical_sampling_factor as u16
                        };

                        let offset = worker_mcu_y as usize * coefficients_per_mcu_row;
                        self.coefficients[scan.component_indices[i]][offset .. offset + coefficients_per_mcu_row].to_vec()
                    } else {
                        mem::replace(&mut mcu_row_coefficients[i], vec![0i16; coefficients_per_mcu_row])
                    };

                    worker.append_row((i, row_coefficients))?;
                }
            }
        }

        let mut marker = huffman.take_marker(&mut self.reader)?;
        while let Some(Marker::RST(_)) = marker {
            marker = self.read_marker().ok();
        }

        if finished.iter().any(|&c| c) {
            // Retrieve all the data from the worker thread.
            let mut data = vec![Vec::new(); frame.components.len()];

            for (i, &component_index) in scan.component_indices.iter().enumerate() {
                if finished[i] {
                    data[component_index] = worker.get_result(i)?;
                }
            }

            Ok((marker, Some(data)))
        }
        else {
            Ok((marker, None))
        }
    }
}

fn decode_block<R: Read>(reader: &mut R,
                         coefficients: &mut [i16],
                         huffman: &mut HuffmanDecoder,
                         dc_table: Option<&HuffmanTable>,
                         ac_table: Option<&HuffmanTable>,
                         spectral_selection: Range<u8>,
                         successive_approximation_low: u8,
                         eob_run: &mut u16,
                         dc_predictor: &mut i16) -> Result<()> {
    debug_assert_eq!(coefficients.len(), 64);

    if spectral_selection.start == 0 {
        // Section F.2.2.1
        // Figure F.12
        let value = huffman.decode(reader, dc_table.unwrap())?;
        let diff = match value {
            0 => 0,
            1..=11 => huffman.receive_extend(reader, value)?,
            _ => {
                // Section F.1.2.1.1
                // Table F.1
                return Err(Error::Format("invalid DC difference magnitude category".to_owned()));
            },
        };

        // Malicious JPEG files can cause this add to overflow, therefore we use wrapping_add.
        // One example of such a file is tests/crashtest/images/dc-predictor-overflow.jpg
        *dc_predictor = dc_predictor.wrapping_add(diff);
        coefficients[0] = *dc_predictor << successive_approximation_low;
    }

    let mut index = cmp::max(spectral_selection.start, 1);

    if index < spectral_selection.end && *eob_run > 0 {
        *eob_run -= 1;
        return Ok(());
    }

    // Section F.1.2.2.1
    while index < spectral_selection.end {
        if let Some((value, run)) = huffman.decode_fast_ac(reader, ac_table.unwrap())? {
            index += run;

            if index >= spectral_selection.end {
                break;
            }

            coefficients[UNZIGZAG[index as usize] as usize] = value << successive_approximation_low;
            index += 1;
        }
        else {
            let byte = huffman.decode(reader, ac_table.unwrap())?;
            let r = byte >> 4;
            let s = byte & 0x0f;

            if s == 0 {
                match r {
                    15 => index += 16, // Run length of 16 zero coefficients.
                    _  => {
                        *eob_run = (1 << r) - 1;

                        if r > 0 {
                            *eob_run += huffman.get_bits(reader, r)?;
                        }

                        break;
                    },
                }
            }
            else {
                index += r;

                if index >= spectral_selection.end {
                    break;
                }

                coefficients[UNZIGZAG[index as usize] as usize] = huffman.receive_extend(reader, s)? << successive_approximation_low;
                index += 1;
            }
        }
    }

    Ok(())
}

fn decode_block_successive_approximation<R: Read>(reader: &mut R,
                                                  coefficients: &mut [i16],
                                                  huffman: &mut HuffmanDecoder,
                                                  ac_table: Option<&HuffmanTable>,
                                                  spectral_selection: Range<u8>,
                                                  successive_approximation_low: u8,
                                                  eob_run: &mut u16) -> Result<()> {
    debug_assert_eq!(coefficients.len(), 64);

    let bit = 1 << successive_approximation_low;

    if spectral_selection.start == 0 {
        // Section G.1.2.1

        if huffman.get_bits(reader, 1)? == 1 {
            coefficients[0] |= bit;
        }
    }
    else {
        // Section G.1.2.3

        if *eob_run > 0 {
            *eob_run -= 1;
            refine_non_zeroes(reader, coefficients, huffman, spectral_selection, 64, bit)?;
            return Ok(());
        }

        let mut index = spectral_selection.start;

        while index < spectral_selection.end {
            let byte = huffman.decode(reader, ac_table.unwrap())?;
            let r = byte >> 4;
            let s = byte & 0x0f;

            let mut zero_run_length = r;
            let mut value = 0;

            match s {
                0 => {
                    match r {
                        15 => {
                            // Run length of 16 zero coefficients.
                            // We don't need to do anything special here, zero_run_length is 15
                            // and then value (which is zero) gets written, resulting in 16
                            // zero coefficients.
                        },
                        _ => {
                            *eob_run = (1 << r) - 1;

                            if r > 0 {
                                *eob_run += huffman.get_bits(reader, r)?;
                            }

                            // Force end of block.
                            zero_run_length = 64;
                        },
                    }
                },
                1 => {
                    if huffman.get_bits(reader, 1)? == 1 {
                        value = bit;
                    }
                    else {
                        value = -bit;
                    }
                },
                _ => return Err(Error::Format("unexpected huffman code".to_owned())),
            }

            let range = Range {
                start: index,
                end: spectral_selection.end,
            };
            index = refine_non_zeroes(reader, coefficients, huffman, range, zero_run_length, bit)?;

            if value != 0 {
                coefficients[UNZIGZAG[index as usize] as usize] = value;
            }

            index += 1;
        }
    }

    Ok(())
}

fn refine_non_zeroes<R: Read>(reader: &mut R,
                              coefficients: &mut [i16],
                              huffman: &mut HuffmanDecoder,
                              range: Range<u8>,
                              zrl: u8,
                              bit: i16) -> Result<u8> {
    debug_assert_eq!(coefficients.len(), 64);

    let last = range.end - 1;
    let mut zero_run_length = zrl;

    for i in range {
        let index = UNZIGZAG[i as usize] as usize;

        if coefficients[index] == 0 {
            if zero_run_length == 0 {
                return Ok(i);
            }

            zero_run_length -= 1;
        }
        else if huffman.get_bits(reader, 1)? == 1 && coefficients[index] & bit == 0 {
            if coefficients[index] > 0 {
                coefficients[index] += bit;
            }
            else {
                coefficients[index] -= bit;
            }
        }
    }

    Ok(last)
}

fn compute_image(components: &[Component],
                 mut data: Vec<Vec<u8>>,
                 output_size: Dimensions,
                 is_jfif: bool,
                 color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
    if data.is_empty() || data.iter().any(Vec::is_empty) {
        return Err(Error::Format("not all components have data".to_owned()));
    }

    if components.len() == 1 {
        let component = &components[0];
        let mut decoded: Vec<u8> = data.remove(0);

        let width = component.size.width as usize;
        let height = component.size.height as usize;
        let size = width * height;
        let line_stride = component.block_size.width as usize * component.dct_scale;

        // if the image width is a multiple of the block size,
        // then we don't have to move bytes in the decoded data
        if usize::from(output_size.width) != line_stride {
            let mut buffer = vec![0u8; width];
            // The first line already starts at index 0, so we need to move only lines 1..height
            for y in 1..height {
                let destination_idx = y * width;
                let source_idx = y * line_stride;
                // We could use copy_within, but we need to support old rust versions
                buffer.copy_from_slice(&decoded[source_idx..][..width]);
                let destination = &mut decoded[destination_idx..][..width];
                destination.copy_from_slice(&buffer);
            }
        }
        decoded.resize(size, 0);
        Ok(decoded)
    }
    else {
        compute_image_parallel(components, data, output_size, is_jfif, color_transform)
    }
}

#[cfg(feature="rayon")]
fn compute_image_parallel(components: &[Component],
                          data: Vec<Vec<u8>>,
                          output_size: Dimensions,
                          is_jfif: bool,
                          color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
    use rayon::prelude::*;

    let color_convert_func = choose_color_convert_func(components.len(), is_jfif, color_transform)?;
    let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
    let line_size = output_size.width as usize * components.len();
    let mut image = vec![0u8; line_size * output_size.height as usize];

    image.par_chunks_mut(line_size)
         .with_max_len(1)
         .enumerate()
         .for_each(|(row, line)| {
             upsampler.upsample_and_interleave_row(&data, row, output_size.width as usize, line);
             color_convert_func(line);
         });

    Ok(image)
 }

#[cfg(not(feature="rayon"))]
fn compute_image_parallel(components: &[Component],
                          data: Vec<Vec<u8>>,
                          output_size: Dimensions,
                          is_jfif: bool,
                          color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
    let color_convert_func = choose_color_convert_func(components.len(), is_jfif, color_transform)?;
    let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
    let line_size = output_size.width as usize * components.len();
    let mut image = vec![0u8; line_size * output_size.height as usize];

    for (row, line) in image.chunks_mut(line_size)
         .enumerate() {
             upsampler.upsample_and_interleave_row(&data, row, output_size.width as usize, line);
             color_convert_func(line);
         }

    Ok(image)
}

fn choose_color_convert_func(component_count: usize,
                             _is_jfif: bool,
                             color_transform: Option<AdobeColorTransform>)
                             -> Result<fn(&mut [u8])> {
    match component_count {
        3 => {
            // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
            // Unknown means the data is RGB, so we don't need to perform any color conversion on it.
            if color_transform == Some(AdobeColorTransform::Unknown) {
                Ok(color_convert_line_null)
            }
            else {
                Ok(color_convert_line_ycbcr)
            }
        },
        4 => {
            // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
            match color_transform {
                Some(AdobeColorTransform::Unknown) => Ok(color_convert_line_cmyk),
                Some(_) => Ok(color_convert_line_ycck),
                None => Err(Error::Format("4 components without Adobe APP14 metadata to indicate color space".to_owned())),
            }
        },
        _ => panic!(),
    }
}

fn color_convert_line_null(_data: &mut [u8]) {
}

fn color_convert_line_ycbcr(data: &mut [u8]) {
    for chunk in data.chunks_exact_mut(3) {
        let (r, g, b) = ycbcr_to_rgb(chunk[0], chunk[1], chunk[2]);
        chunk[0] = r;
        chunk[1] = g;
        chunk[2] = b;
    }
}

fn color_convert_line_ycck(data: &mut [u8]) {
    for chunk in data.chunks_exact_mut(4) {
        let (r, g, b) = ycbcr_to_rgb(chunk[0], chunk[1], chunk[2]);
        let k = chunk[3];
        chunk[0] = r;
        chunk[1] = g;
        chunk[2] = b;
        chunk[3] = 255 - k;

    }
}

fn color_convert_line_cmyk(data: &mut [u8]) {
    for chunk in data.chunks_exact_mut(4) {
        chunk[0] = 255 - chunk[0];
        chunk[1] = 255 - chunk[1];
        chunk[2] = 255 - chunk[2];
        chunk[3] = 255 - chunk[3];
    }
}

// ITU-R BT.601
fn ycbcr_to_rgb(y: u8, cb: u8, cr: u8) -> (u8, u8, u8) {
    let y = y as f32;
    let cb = cb as f32 - 128.0;
    let cr = cr as f32 - 128.0;

    let r = y                + 1.40200 * cr;
    let g = y - 0.34414 * cb - 0.71414 * cr;
    let b = y + 1.77200 * cb;

    // TODO: Rust has defined float-to-int conversion as saturating,
    // which is exactly what we need here. However, as of this writing
    // it still hasn't reached the stable channel.
    // This can be simplified to `(r + 0.5) as u8` without any clamping
    // as soon as our MSRV reaches the version that has saturating casts.
    // The version without explicit clamping is also noticeably faster.
    (clamp_to_u8((r + 0.5) as i32) as u8,
     clamp_to_u8((g + 0.5) as i32) as u8,
     clamp_to_u8((b + 0.5) as i32) as u8)
}

fn clamp_to_u8(value: i32) -> i32 {
    let value = std::cmp::max(value, 0);
    std::cmp::min(value, 255)
}