1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
use crate::read_u8;
use error::{Error, Result, UnsupportedFeature};
use huffman::{fill_default_mjpeg_tables, HuffmanDecoder, HuffmanTable};
use marker::Marker;
use parser::{AdobeColorTransform, AppData, CodingProcess, Component, Dimensions, EntropyCoding, FrameInfo,
parse_app, parse_com, parse_dht, parse_dqt, parse_dri, parse_sof, parse_sos, IccChunk,
ScanInfo};
use upsampler::Upsampler;
use std::cmp;
use std::io::Read;
use std::mem;
use std::ops::Range;
use std::sync::Arc;
use worker::{RowData, PlatformWorker, Worker};
pub const MAX_COMPONENTS: usize = 4;
static UNZIGZAG: [u8; 64] = [
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
];
/// An enumeration over combinations of color spaces and bit depths a pixel can have.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum PixelFormat {
/// Luminance (grayscale), 8 bits
L8,
/// RGB, 8 bits per channel
RGB24,
/// CMYK, 8 bits per channel
CMYK32,
}
impl PixelFormat {
/// Determine the size in bytes of each pixel in this format
pub fn pixel_bytes(&self) -> usize {
match self {
PixelFormat::L8 => 1,
PixelFormat::RGB24 => 3,
PixelFormat::CMYK32 => 4,
}
}
}
/// Represents metadata of an image.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ImageInfo {
/// The width of the image, in pixels.
pub width: u16,
/// The height of the image, in pixels.
pub height: u16,
/// The pixel format of the image.
pub pixel_format: PixelFormat,
}
/// JPEG decoder
pub struct Decoder<R> {
reader: R,
frame: Option<FrameInfo>,
dc_huffman_tables: Vec<Option<HuffmanTable>>,
ac_huffman_tables: Vec<Option<HuffmanTable>>,
quantization_tables: [Option<Arc<[u16; 64]>>; 4],
restart_interval: u16,
color_transform: Option<AdobeColorTransform>,
is_jfif: bool,
is_mjpeg: bool,
icc_markers: Vec<IccChunk>,
// Used for progressive JPEGs.
coefficients: Vec<Vec<i16>>,
// Bitmask of which coefficients has been completely decoded.
coefficients_finished: [u64; MAX_COMPONENTS],
}
impl<R: Read> Decoder<R> {
/// Creates a new `Decoder` using the reader `reader`.
pub fn new(reader: R) -> Decoder<R> {
Decoder {
reader: reader,
frame: None,
dc_huffman_tables: vec![None, None, None, None],
ac_huffman_tables: vec![None, None, None, None],
quantization_tables: [None, None, None, None],
restart_interval: 0,
color_transform: None,
is_jfif: false,
is_mjpeg: false,
icc_markers: Vec::new(),
coefficients: Vec::new(),
coefficients_finished: [0; MAX_COMPONENTS],
}
}
/// Returns metadata about the image.
///
/// The returned value will be `None` until a call to either `read_info` or `decode` has
/// returned `Ok`.
pub fn info(&self) -> Option<ImageInfo> {
match self.frame {
Some(ref frame) => {
let pixel_format = match frame.components.len() {
1 => PixelFormat::L8,
3 => PixelFormat::RGB24,
4 => PixelFormat::CMYK32,
_ => panic!(),
};
Some(ImageInfo {
width: frame.output_size.width,
height: frame.output_size.height,
pixel_format: pixel_format,
})
},
None => None,
}
}
/// Returns the embeded icc profile if the image contains one.
pub fn icc_profile(&self) -> Option<Vec<u8>> {
let mut marker_present: [Option<&IccChunk>; 256] = [None; 256];
let num_markers = self.icc_markers.len();
if num_markers == 0 && num_markers < 256 {
return None;
}
// check the validity of the markers
for chunk in &self.icc_markers {
if usize::from(chunk.num_markers) != num_markers {
// all the lengths must match
return None;
}
if chunk.seq_no == 0 {
return None;
}
if marker_present[usize::from(chunk.seq_no)].is_some() {
// duplicate seq_no
return None;
} else {
marker_present[usize::from(chunk.seq_no)] = Some(chunk);
}
}
// assemble them together by seq_no failing if any are missing
let mut data = Vec::new();
// seq_no's start at 1
for &chunk in marker_present.get(1..=num_markers)? {
data.extend_from_slice(&chunk?.data);
}
Some(data)
}
/// Tries to read metadata from the image without decoding it.
///
/// If successful, the metadata can be obtained using the `info` method.
pub fn read_info(&mut self) -> Result<()> {
self.decode_internal(true).map(|_| ())
}
/// Configure the decoder to scale the image during decoding.
///
/// This efficiently scales the image by the smallest supported scale
/// factor that produces an image larger than or equal to the requested
/// size in at least one axis. The currently implemented scale factors
/// are 1/8, 1/4, 1/2 and 1.
///
/// To generate a thumbnail of an exact size, pass the desired size and
/// then scale to the final size using a traditional resampling algorithm.
pub fn scale(&mut self, requested_width: u16, requested_height: u16) -> Result<(u16, u16)> {
self.read_info()?;
let frame = self.frame.as_mut().unwrap();
let idct_size = crate::idct::choose_idct_size(frame.image_size, Dimensions{ width: requested_width, height: requested_height });
frame.update_idct_size(idct_size)?;
Ok((frame.output_size.width, frame.output_size.height))
}
/// Decodes the image and returns the decoded pixels if successful.
pub fn decode(&mut self) -> Result<Vec<u8>> {
self.decode_internal(false)
}
fn decode_internal(&mut self, stop_after_metadata: bool) -> Result<Vec<u8>> {
if stop_after_metadata && self.frame.is_some() {
// The metadata has already been read.
return Ok(Vec::new());
}
else if self.frame.is_none() && (read_u8(&mut self.reader)? != 0xFF || Marker::from_u8(read_u8(&mut self.reader)?) != Some(Marker::SOI)) {
return Err(Error::Format("first two bytes are not an SOI marker".to_owned()));
}
let mut previous_marker = Marker::SOI;
let mut pending_marker = None;
let mut worker = None;
let mut scans_processed = 0;
let mut planes = vec![Vec::new(); self.frame.as_ref().map_or(0, |frame| frame.components.len())];
loop {
let marker = match pending_marker.take() {
Some(m) => m,
None => self.read_marker()?,
};
match marker {
// Frame header
Marker::SOF(..) => {
// Section 4.10
// "An image contains only one frame in the cases of sequential and
// progressive coding processes; an image contains multiple frames for the
// hierarchical mode."
if self.frame.is_some() {
return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
}
let frame = parse_sof(&mut self.reader, marker)?;
let component_count = frame.components.len();
if frame.is_differential {
return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
}
if frame.coding_process == CodingProcess::Lossless {
return Err(Error::Unsupported(UnsupportedFeature::Lossless));
}
if frame.entropy_coding == EntropyCoding::Arithmetic {
return Err(Error::Unsupported(UnsupportedFeature::ArithmeticEntropyCoding));
}
if frame.precision != 8 {
return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision(frame.precision)));
}
if component_count != 1 && component_count != 3 && component_count != 4 {
return Err(Error::Unsupported(UnsupportedFeature::ComponentCount(component_count as u8)));
}
// Make sure we support the subsampling ratios used.
let _ = Upsampler::new(&frame.components, frame.image_size.width, frame.image_size.height)?;
self.frame = Some(frame);
if stop_after_metadata {
return Ok(Vec::new());
}
planes = vec![Vec::new(); component_count];
},
// Scan header
Marker::SOS => {
if self.frame.is_none() {
return Err(Error::Format("scan encountered before frame".to_owned()));
}
if worker.is_none() {
worker = Some(PlatformWorker::new()?);
}
let frame = self.frame.clone().unwrap();
let scan = parse_sos(&mut self.reader, &frame)?;
if frame.coding_process == CodingProcess::DctProgressive && self.coefficients.is_empty() {
self.coefficients = frame.components.iter().map(|c| {
let block_count = c.block_size.width as usize * c.block_size.height as usize;
vec![0; block_count * 64]
}).collect();
}
// This was previously buggy, so let's explain the log here a bit. When a
// progressive frame is encoded then the coefficients (DC, AC) of each
// component (=color plane) can be split amongst scans. In particular it can
// happen or at least occurs in the wild that a scan contains coefficient 0 of
// all components. If now one but not all components had all other coefficients
// delivered in previous scans then such a scan contains all components but
// completes only some of them! (This is technically NOT permitted for all
// other coefficients as the standard dictates that scans with coefficients
// other than the 0th must only contain ONE component so we would either
// complete it or not. We may want to detect and error in case more component
// are part of a scan than allowed.) What a weird edge case.
//
// But this means we track precisely which components get completed here.
let mut finished = [false; MAX_COMPONENTS];
if scan.successive_approximation_low == 0 {
for (&i, component_finished) in scan.component_indices.iter().zip(&mut finished) {
if self.coefficients_finished[i] == !0 {
continue;
}
for j in scan.spectral_selection.clone() {
self.coefficients_finished[i] |= 1 << j;
}
if self.coefficients_finished[i] == !0 {
*component_finished = true;
}
}
}
let (marker, data) = self.decode_scan(&frame, &scan, worker.as_mut().unwrap(), &finished)?;
if let Some(data) = data {
for (i, plane) in data.into_iter().enumerate().filter(|&(_, ref plane)| !plane.is_empty()) {
if self.coefficients_finished[i] == !0 {
planes[i] = plane;
}
}
}
pending_marker = marker;
scans_processed += 1;
},
// Table-specification and miscellaneous markers
// Quantization table-specification
Marker::DQT => {
let tables = parse_dqt(&mut self.reader)?;
for (i, &table) in tables.iter().enumerate() {
if let Some(table) = table {
let mut unzigzagged_table = [0u16; 64];
for j in 0 .. 64 {
unzigzagged_table[UNZIGZAG[j] as usize] = table[j];
}
self.quantization_tables[i] = Some(Arc::new(unzigzagged_table));
}
}
},
// Huffman table-specification
Marker::DHT => {
let is_baseline = self.frame.as_ref().map(|frame| frame.is_baseline);
let (dc_tables, ac_tables) = parse_dht(&mut self.reader, is_baseline)?;
let current_dc_tables = mem::replace(&mut self.dc_huffman_tables, vec![]);
self.dc_huffman_tables = dc_tables.into_iter()
.zip(current_dc_tables.into_iter())
.map(|(a, b)| a.or(b))
.collect();
let current_ac_tables = mem::replace(&mut self.ac_huffman_tables, vec![]);
self.ac_huffman_tables = ac_tables.into_iter()
.zip(current_ac_tables.into_iter())
.map(|(a, b)| a.or(b))
.collect();
},
// Arithmetic conditioning table-specification
Marker::DAC => return Err(Error::Unsupported(UnsupportedFeature::ArithmeticEntropyCoding)),
// Restart interval definition
Marker::DRI => self.restart_interval = parse_dri(&mut self.reader)?,
// Comment
Marker::COM => {
let _comment = parse_com(&mut self.reader)?;
},
// Application data
Marker::APP(..) => {
if let Some(data) = parse_app(&mut self.reader, marker)? {
match data {
AppData::Adobe(color_transform) => self.color_transform = Some(color_transform),
AppData::Jfif => {
// From the JFIF spec:
// "The APP0 marker is used to identify a JPEG FIF file.
// The JPEG FIF APP0 marker is mandatory right after the SOI marker."
// Some JPEGs in the wild does not follow this though, so we allow
// JFIF headers anywhere APP0 markers are allowed.
/*
if previous_marker != Marker::SOI {
return Err(Error::Format("the JFIF APP0 marker must come right after the SOI marker".to_owned()));
}
*/
self.is_jfif = true;
},
AppData::Avi1 => self.is_mjpeg = true,
AppData::Icc(icc) => self.icc_markers.push(icc),
}
}
},
// Restart
Marker::RST(..) => {
// Some encoders emit a final RST marker after entropy-coded data, which
// decode_scan does not take care of. So if we encounter one, we ignore it.
if previous_marker != Marker::SOS {
return Err(Error::Format("RST found outside of entropy-coded data".to_owned()));
}
},
// Define number of lines
Marker::DNL => {
// Section B.2.1
// "If a DNL segment (see B.2.5) is present, it shall immediately follow the first scan."
if previous_marker != Marker::SOS || scans_processed != 1 {
return Err(Error::Format("DNL is only allowed immediately after the first scan".to_owned()));
}
return Err(Error::Unsupported(UnsupportedFeature::DNL));
},
// Hierarchical mode markers
Marker::DHP | Marker::EXP => return Err(Error::Unsupported(UnsupportedFeature::Hierarchical)),
// End of image
Marker::EOI => break,
_ => return Err(Error::Format(format!("{:?} marker found where not allowed", marker))),
}
previous_marker = marker;
}
if self.frame.is_none() {
return Err(Error::Format("end of image encountered before frame".to_owned()));
}
let frame = self.frame.as_ref().unwrap();
// If we're decoding a progressive jpeg and a component is unfinished, render what we've got
if frame.coding_process == CodingProcess::DctProgressive && self.coefficients.len() == frame.components.len() {
for (i, component) in frame.components.iter().enumerate() {
// Only dealing with unfinished components
if self.coefficients_finished[i] == !0 {
continue;
}
let quantization_table = match self.quantization_tables[component.quantization_table_index].clone() {
Some(quantization_table) => quantization_table,
None => continue,
};
// Get the worker prepared
if worker.is_none() {
worker = Some(PlatformWorker::new()?);
}
let worker = worker.as_mut().unwrap();
let row_data = RowData {
index: i,
component: component.clone(),
quantization_table,
};
worker.start(row_data)?;
// Send the rows over to the worker and collect the result
let coefficients_per_mcu_row = usize::from(component.block_size.width) * usize::from(component.vertical_sampling_factor) * 64;
for mcu_y in 0..frame.mcu_size.height {
let row_coefficients = {
let offset = usize::from(mcu_y) * coefficients_per_mcu_row;
self.coefficients[i][offset .. offset + coefficients_per_mcu_row].to_vec()
};
worker.append_row((i, row_coefficients))?;
}
planes[i] = worker.get_result(i)?;
}
}
compute_image(&frame.components, planes, frame.output_size, self.is_jfif, self.color_transform)
}
fn read_marker(&mut self) -> Result<Marker> {
loop {
// This should be an error as the JPEG spec doesn't allow extraneous data between marker segments.
// libjpeg allows this though and there are images in the wild utilising it, so we are
// forced to support this behavior.
// Sony Ericsson P990i is an example of a device which produce this sort of JPEGs.
while read_u8(&mut self.reader)? != 0xFF {}
// Section B.1.1.2
// All markers are assigned two-byte codes: an X’FF’ byte followed by a
// byte which is not equal to 0 or X’FF’ (see Table B.1). Any marker may
// optionally be preceded by any number of fill bytes, which are bytes
// assigned code X’FF’.
let mut byte = read_u8(&mut self.reader)?;
// Section B.1.1.2
// "Any marker may optionally be preceded by any number of fill bytes, which are bytes assigned code X’FF’."
while byte == 0xFF {
byte = read_u8(&mut self.reader)?;
}
if byte != 0x00 && byte != 0xFF {
return Ok(Marker::from_u8(byte).unwrap());
}
}
}
fn decode_scan(&mut self,
frame: &FrameInfo,
scan: &ScanInfo,
worker: &mut PlatformWorker,
finished: &[bool; MAX_COMPONENTS])
-> Result<(Option<Marker>, Option<Vec<Vec<u8>>>)> {
assert!(scan.component_indices.len() <= MAX_COMPONENTS);
let components: Vec<Component> = scan.component_indices.iter()
.map(|&i| frame.components[i].clone())
.collect();
// Verify that all required quantization tables has been set.
if components.iter().any(|component| self.quantization_tables[component.quantization_table_index].is_none()) {
return Err(Error::Format("use of unset quantization table".to_owned()));
}
if self.is_mjpeg {
fill_default_mjpeg_tables(scan, &mut self.dc_huffman_tables, &mut self.ac_huffman_tables);
}
// Verify that all required huffman tables has been set.
if scan.spectral_selection.start == 0 &&
scan.dc_table_indices.iter().any(|&i| self.dc_huffman_tables[i].is_none()) {
return Err(Error::Format("scan makes use of unset dc huffman table".to_owned()));
}
if scan.spectral_selection.end > 1 &&
scan.ac_table_indices.iter().any(|&i| self.ac_huffman_tables[i].is_none()) {
return Err(Error::Format("scan makes use of unset ac huffman table".to_owned()));
}
// Prepare the worker thread for the work to come.
for (i, component) in components.iter().enumerate() {
if finished[i] {
let row_data = RowData {
index: i,
component: component.clone(),
quantization_table: self.quantization_tables[component.quantization_table_index].clone().unwrap(),
};
worker.start(row_data)?;
}
}
let is_progressive = frame.coding_process == CodingProcess::DctProgressive;
let is_interleaved = components.len() > 1;
let mut dummy_block = [0i16; 64];
let mut huffman = HuffmanDecoder::new();
let mut dc_predictors = [0i16; MAX_COMPONENTS];
let mut mcus_left_until_restart = self.restart_interval;
let mut expected_rst_num = 0;
let mut eob_run = 0;
let mut mcu_row_coefficients = Vec::with_capacity(components.len());
if !is_progressive {
for (_, component) in components.iter().enumerate().filter(|&(i, _)| finished[i]) {
let coefficients_per_mcu_row = component.block_size.width as usize * component.vertical_sampling_factor as usize * 64;
mcu_row_coefficients.push(vec![0i16; coefficients_per_mcu_row]);
}
}
// 4.8.2
// When reading from the stream, if the data is non-interleaved then an MCU consists of
// exactly one block (effectively a 1x1 sample).
let (mcu_horizontal_samples, mcu_vertical_samples) = if is_interleaved {
let horizontal = components.iter().map(|component| component.horizontal_sampling_factor as u16).collect::<Vec<_>>();
let vertical = components.iter().map(|component| component.vertical_sampling_factor as u16).collect::<Vec<_>>();
(horizontal, vertical)
} else {
(vec![1], vec![1])
};
// This also affects how many MCU values we read from stream. If it's a non-interleaved stream,
// the MCUs will be exactly the block count.
let (max_mcu_x, max_mcu_y) = if is_interleaved {
(frame.mcu_size.width, frame.mcu_size.height)
} else {
(components[0].block_size.width, components[0].block_size.height)
};
for mcu_y in 0..max_mcu_y {
if mcu_y * 8 >= frame.image_size.height {
break;
}
for mcu_x in 0..max_mcu_x {
if mcu_x * 8 >= frame.image_size.width {
break;
}
if self.restart_interval > 0 {
if mcus_left_until_restart == 0 {
match huffman.take_marker(&mut self.reader)? {
Some(Marker::RST(n)) => {
if n != expected_rst_num {
return Err(Error::Format(format!("found RST{} where RST{} was expected", n, expected_rst_num)));
}
huffman.reset();
// Section F.2.1.3.1
dc_predictors = [0i16; MAX_COMPONENTS];
// Section G.1.2.2
eob_run = 0;
expected_rst_num = (expected_rst_num + 1) % 8;
mcus_left_until_restart = self.restart_interval;
},
Some(marker) => return Err(Error::Format(format!("found marker {:?} inside scan where RST{} was expected", marker, expected_rst_num))),
None => return Err(Error::Format(format!("no marker found where RST{} was expected", expected_rst_num))),
}
}
mcus_left_until_restart -= 1;
}
for (i, component) in components.iter().enumerate() {
for v_pos in 0..mcu_vertical_samples[i] {
for h_pos in 0..mcu_horizontal_samples[i] {
let coefficients = if is_progressive {
let block_y = (mcu_y * mcu_vertical_samples[i] + v_pos) as usize;
let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
let block_offset = (block_y * component.block_size.width as usize + block_x) * 64;
&mut self.coefficients[scan.component_indices[i]][block_offset..block_offset + 64]
} else if finished[i] {
// Because the worker thread operates in batches as if we were always interleaved, we
// need to distinguish between a single-shot buffer and one that's currently in process
// (for a non-interleaved) stream
let mcu_batch_current_row = if is_interleaved {
0
} else {
mcu_y % component.vertical_sampling_factor as u16
};
let block_y = (mcu_batch_current_row * mcu_vertical_samples[i] + v_pos) as usize;
let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
let block_offset = (block_y * component.block_size.width as usize + block_x) * 64;
&mut mcu_row_coefficients[i][block_offset..block_offset + 64]
} else {
&mut dummy_block[..]
};
if scan.successive_approximation_high == 0 {
decode_block(&mut self.reader,
coefficients,
&mut huffman,
self.dc_huffman_tables[scan.dc_table_indices[i]].as_ref(),
self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
scan.spectral_selection.clone(),
scan.successive_approximation_low,
&mut eob_run,
&mut dc_predictors[i])?;
}
else {
decode_block_successive_approximation(&mut self.reader,
coefficients,
&mut huffman,
self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
scan.spectral_selection.clone(),
scan.successive_approximation_low,
&mut eob_run)?;
}
}
}
}
}
// Send the coefficients from this MCU row to the worker thread for dequantization and idct.
for (i, component) in components.iter().enumerate() {
if finished[i] {
// In the event of non-interleaved streams, if we're still building the buffer out,
// keep going; don't send it yet. We also need to ensure we don't skip over the last
// row(s) of the image.
if !is_interleaved && (mcu_y + 1) * 8 < frame.image_size.height {
if (mcu_y + 1) % component.vertical_sampling_factor as u16 > 0 {
continue;
}
}
let coefficients_per_mcu_row = component.block_size.width as usize * component.vertical_sampling_factor as usize * 64;
let row_coefficients = if is_progressive {
// Because non-interleaved streams will have multiple MCU rows concatenated together,
// the row for calculating the offset is different.
let worker_mcu_y = if is_interleaved {
mcu_y
} else {
// Explicitly doing floor-division here
mcu_y / component.vertical_sampling_factor as u16
};
let offset = worker_mcu_y as usize * coefficients_per_mcu_row;
self.coefficients[scan.component_indices[i]][offset .. offset + coefficients_per_mcu_row].to_vec()
} else {
mem::replace(&mut mcu_row_coefficients[i], vec![0i16; coefficients_per_mcu_row])
};
worker.append_row((i, row_coefficients))?;
}
}
}
let mut marker = huffman.take_marker(&mut self.reader)?;
while let Some(Marker::RST(_)) = marker {
marker = self.read_marker().ok();
}
if finished.iter().any(|&c| c) {
// Retrieve all the data from the worker thread.
let mut data = vec![Vec::new(); frame.components.len()];
for (i, &component_index) in scan.component_indices.iter().enumerate() {
if finished[i] {
data[component_index] = worker.get_result(i)?;
}
}
Ok((marker, Some(data)))
}
else {
Ok((marker, None))
}
}
}
fn decode_block<R: Read>(reader: &mut R,
coefficients: &mut [i16],
huffman: &mut HuffmanDecoder,
dc_table: Option<&HuffmanTable>,
ac_table: Option<&HuffmanTable>,
spectral_selection: Range<u8>,
successive_approximation_low: u8,
eob_run: &mut u16,
dc_predictor: &mut i16) -> Result<()> {
debug_assert_eq!(coefficients.len(), 64);
if spectral_selection.start == 0 {
// Section F.2.2.1
// Figure F.12
let value = huffman.decode(reader, dc_table.unwrap())?;
let diff = match value {
0 => 0,
1..=11 => huffman.receive_extend(reader, value)?,
_ => {
// Section F.1.2.1.1
// Table F.1
return Err(Error::Format("invalid DC difference magnitude category".to_owned()));
},
};
// Malicious JPEG files can cause this add to overflow, therefore we use wrapping_add.
// One example of such a file is tests/crashtest/images/dc-predictor-overflow.jpg
*dc_predictor = dc_predictor.wrapping_add(diff);
coefficients[0] = *dc_predictor << successive_approximation_low;
}
let mut index = cmp::max(spectral_selection.start, 1);
if index < spectral_selection.end && *eob_run > 0 {
*eob_run -= 1;
return Ok(());
}
// Section F.1.2.2.1
while index < spectral_selection.end {
if let Some((value, run)) = huffman.decode_fast_ac(reader, ac_table.unwrap())? {
index += run;
if index >= spectral_selection.end {
break;
}
coefficients[UNZIGZAG[index as usize] as usize] = value << successive_approximation_low;
index += 1;
}
else {
let byte = huffman.decode(reader, ac_table.unwrap())?;
let r = byte >> 4;
let s = byte & 0x0f;
if s == 0 {
match r {
15 => index += 16, // Run length of 16 zero coefficients.
_ => {
*eob_run = (1 << r) - 1;
if r > 0 {
*eob_run += huffman.get_bits(reader, r)?;
}
break;
},
}
}
else {
index += r;
if index >= spectral_selection.end {
break;
}
coefficients[UNZIGZAG[index as usize] as usize] = huffman.receive_extend(reader, s)? << successive_approximation_low;
index += 1;
}
}
}
Ok(())
}
fn decode_block_successive_approximation<R: Read>(reader: &mut R,
coefficients: &mut [i16],
huffman: &mut HuffmanDecoder,
ac_table: Option<&HuffmanTable>,
spectral_selection: Range<u8>,
successive_approximation_low: u8,
eob_run: &mut u16) -> Result<()> {
debug_assert_eq!(coefficients.len(), 64);
let bit = 1 << successive_approximation_low;
if spectral_selection.start == 0 {
// Section G.1.2.1
if huffman.get_bits(reader, 1)? == 1 {
coefficients[0] |= bit;
}
}
else {
// Section G.1.2.3
if *eob_run > 0 {
*eob_run -= 1;
refine_non_zeroes(reader, coefficients, huffman, spectral_selection, 64, bit)?;
return Ok(());
}
let mut index = spectral_selection.start;
while index < spectral_selection.end {
let byte = huffman.decode(reader, ac_table.unwrap())?;
let r = byte >> 4;
let s = byte & 0x0f;
let mut zero_run_length = r;
let mut value = 0;
match s {
0 => {
match r {
15 => {
// Run length of 16 zero coefficients.
// We don't need to do anything special here, zero_run_length is 15
// and then value (which is zero) gets written, resulting in 16
// zero coefficients.
},
_ => {
*eob_run = (1 << r) - 1;
if r > 0 {
*eob_run += huffman.get_bits(reader, r)?;
}
// Force end of block.
zero_run_length = 64;
},
}
},
1 => {
if huffman.get_bits(reader, 1)? == 1 {
value = bit;
}
else {
value = -bit;
}
},
_ => return Err(Error::Format("unexpected huffman code".to_owned())),
}
let range = Range {
start: index,
end: spectral_selection.end,
};
index = refine_non_zeroes(reader, coefficients, huffman, range, zero_run_length, bit)?;
if value != 0 {
coefficients[UNZIGZAG[index as usize] as usize] = value;
}
index += 1;
}
}
Ok(())
}
fn refine_non_zeroes<R: Read>(reader: &mut R,
coefficients: &mut [i16],
huffman: &mut HuffmanDecoder,
range: Range<u8>,
zrl: u8,
bit: i16) -> Result<u8> {
debug_assert_eq!(coefficients.len(), 64);
let last = range.end - 1;
let mut zero_run_length = zrl;
for i in range {
let index = UNZIGZAG[i as usize] as usize;
if coefficients[index] == 0 {
if zero_run_length == 0 {
return Ok(i);
}
zero_run_length -= 1;
}
else if huffman.get_bits(reader, 1)? == 1 && coefficients[index] & bit == 0 {
if coefficients[index] > 0 {
coefficients[index] += bit;
}
else {
coefficients[index] -= bit;
}
}
}
Ok(last)
}
fn compute_image(components: &[Component],
mut data: Vec<Vec<u8>>,
output_size: Dimensions,
is_jfif: bool,
color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
if data.is_empty() || data.iter().any(Vec::is_empty) {
return Err(Error::Format("not all components have data".to_owned()));
}
if components.len() == 1 {
let component = &components[0];
let mut decoded: Vec<u8> = data.remove(0);
let width = component.size.width as usize;
let height = component.size.height as usize;
let size = width * height;
let line_stride = component.block_size.width as usize * component.dct_scale;
// if the image width is a multiple of the block size,
// then we don't have to move bytes in the decoded data
if usize::from(output_size.width) != line_stride {
let mut buffer = vec![0u8; width];
// The first line already starts at index 0, so we need to move only lines 1..height
for y in 1..height {
let destination_idx = y * width;
let source_idx = y * line_stride;
// We could use copy_within, but we need to support old rust versions
buffer.copy_from_slice(&decoded[source_idx..][..width]);
let destination = &mut decoded[destination_idx..][..width];
destination.copy_from_slice(&buffer);
}
}
decoded.resize(size, 0);
Ok(decoded)
}
else {
compute_image_parallel(components, data, output_size, is_jfif, color_transform)
}
}
#[cfg(feature="rayon")]
fn compute_image_parallel(components: &[Component],
data: Vec<Vec<u8>>,
output_size: Dimensions,
is_jfif: bool,
color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
use rayon::prelude::*;
let color_convert_func = choose_color_convert_func(components.len(), is_jfif, color_transform)?;
let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
let line_size = output_size.width as usize * components.len();
let mut image = vec![0u8; line_size * output_size.height as usize];
image.par_chunks_mut(line_size)
.with_max_len(1)
.enumerate()
.for_each(|(row, line)| {
upsampler.upsample_and_interleave_row(&data, row, output_size.width as usize, line);
color_convert_func(line);
});
Ok(image)
}
#[cfg(not(feature="rayon"))]
fn compute_image_parallel(components: &[Component],
data: Vec<Vec<u8>>,
output_size: Dimensions,
is_jfif: bool,
color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
let color_convert_func = choose_color_convert_func(components.len(), is_jfif, color_transform)?;
let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
let line_size = output_size.width as usize * components.len();
let mut image = vec![0u8; line_size * output_size.height as usize];
for (row, line) in image.chunks_mut(line_size)
.enumerate() {
upsampler.upsample_and_interleave_row(&data, row, output_size.width as usize, line);
color_convert_func(line);
}
Ok(image)
}
fn choose_color_convert_func(component_count: usize,
_is_jfif: bool,
color_transform: Option<AdobeColorTransform>)
-> Result<fn(&mut [u8])> {
match component_count {
3 => {
// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
// Unknown means the data is RGB, so we don't need to perform any color conversion on it.
if color_transform == Some(AdobeColorTransform::Unknown) {
Ok(color_convert_line_null)
}
else {
Ok(color_convert_line_ycbcr)
}
},
4 => {
// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
match color_transform {
Some(AdobeColorTransform::Unknown) => Ok(color_convert_line_cmyk),
Some(_) => Ok(color_convert_line_ycck),
None => Err(Error::Format("4 components without Adobe APP14 metadata to indicate color space".to_owned())),
}
},
_ => panic!(),
}
}
fn color_convert_line_null(_data: &mut [u8]) {
}
fn color_convert_line_ycbcr(data: &mut [u8]) {
for chunk in data.chunks_exact_mut(3) {
let (r, g, b) = ycbcr_to_rgb(chunk[0], chunk[1], chunk[2]);
chunk[0] = r;
chunk[1] = g;
chunk[2] = b;
}
}
fn color_convert_line_ycck(data: &mut [u8]) {
for chunk in data.chunks_exact_mut(4) {
let (r, g, b) = ycbcr_to_rgb(chunk[0], chunk[1], chunk[2]);
let k = chunk[3];
chunk[0] = r;
chunk[1] = g;
chunk[2] = b;
chunk[3] = 255 - k;
}
}
fn color_convert_line_cmyk(data: &mut [u8]) {
for chunk in data.chunks_exact_mut(4) {
chunk[0] = 255 - chunk[0];
chunk[1] = 255 - chunk[1];
chunk[2] = 255 - chunk[2];
chunk[3] = 255 - chunk[3];
}
}
// ITU-R BT.601
fn ycbcr_to_rgb(y: u8, cb: u8, cr: u8) -> (u8, u8, u8) {
let y = y as f32;
let cb = cb as f32 - 128.0;
let cr = cr as f32 - 128.0;
let r = y + 1.40200 * cr;
let g = y - 0.34414 * cb - 0.71414 * cr;
let b = y + 1.77200 * cb;
// TODO: Rust has defined float-to-int conversion as saturating,
// which is exactly what we need here. However, as of this writing
// it still hasn't reached the stable channel.
// This can be simplified to `(r + 0.5) as u8` without any clamping
// as soon as our MSRV reaches the version that has saturating casts.
// The version without explicit clamping is also noticeably faster.
(clamp_to_u8((r + 0.5) as i32) as u8,
clamp_to_u8((g + 0.5) as i32) as u8,
clamp_to_u8((b + 0.5) as i32) as u8)
}
fn clamp_to_u8(value: i32) -> i32 {
let value = std::cmp::max(value, 0);
std::cmp::min(value, 255)
}