1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
//! Default "chef's choice" [`ScopedRawMutex`] implementation.
//!
//! This type is what users will get when they don't override the `Lock` type
//! parameter for `maitake-sync`'s synchronziation primitives.
//!
//! # Notes
//!
//! - The `DefaultMutex` cannot ever implement `RawMutex`, only
//!   `ScopedRawMutex`. This is because it's impossible for a
//!   `critical-section`-based implementation to implement `RawMutex`, due to
//!   [`critical-section`'s safety requirements][cs-reqs], which we can't uphold
//!   in a RAII situation with multiple locks. If we implemented `RawMutex` for
//!   the non-`critical-section` implementations, then the `critical-section`
//!   feature flag would *take away* methods that would otherwise be available,
//!   making it non-additive, which is a BIG NO-NO for feature flags.
//!
//! - On the other hand, it *is* okay to have `cfg(loom)` not implement
//!   `ConstInit` where every other implementation does. This is because `cfg(loom)`
//!   is a `RUSTFLAGS` cfg rather than a feature flag, and therefore can only be
//!   enabled by the top-level build. It can't be enabled by a dependency and
//!   suddenly make your code not compile. Loom users are already used to stuff
//!   being const-initializable in real life, but not in loom tests, so this is
//!   more okay.
//!
//! [cs-reqs]:
//!     https://docs.rs/critical-section/latest/critical_section/fn.acquire.html#safety
#[cfg(not(loom))]
use super::ConstInit;
use super::ScopedRawMutex;

/// Default, best-effort [`ScopedRawMutex`] implementation.
///
/// This is the default `Lock` type parameter for the [`Mutex`](crate::Mutex)
/// type, and for the async synchronization primitives that use the blocking
/// `Mutex`. This type makes a best-effort attempt to Do The Right Thing based
/// on the currently enabled [feature flags]. In particular, here's what we
/// currently give you:
///
/// - **If `cfg(loom)` is enabled, then the `DefaultMutex` is a [`loom` mutex]**
///   so that `maitake-sync` primitives work nicely in `loom` tests
///
/// - **If the `std` feature is enabled, then the `DefaultMutex` is a
///   [`std::sync::Mutex`]**, so that `std` users get an OS mutex rather than a
///   spinlock.
///
/// - **If the `critical-section` feature is enabled, then the `DefaultMutex` is
///   a spinlock that [acquires a critical section][cs] once locked**. This
///   ensures that bare-metal users who have enabled `critical-section` get a
///   mutex that disables IRQs when locked.
///
/// - **Otherwise, the `DefaultMutex` is a [`Spinlock`]**. This is the default
///   behavior and will at least work on all platforms, but may not be the most
///   efficient, and may not be IRQ-safe.
///
/// # Notes
///
/// - Regardless of feature flags, this type implements the [`ScopedRawMutex`]
///   trait, *not* the [`RawMutex`] trait. In order to use methods or types that
///   require a [`RawMutex`], you must [provide your own `RawMutex`
///   type][overriding].
/// - :warning: If the `critical-section` feature is enabled, you **MUST**
///   provide a `critical-section` implementation.  See the [`critical-section`
///   documentation][cs-providing] for details on how to select an
///   implementation. If you don't provide an implementation, you'll get a
///   [linker error][cs-link-err] when compiling your code.
/// - This type has a `const fn new()` constructor and implements the
///   [`ConstInit` trait](super::ConstInit) *except* when `cfg(loom)` is
///   enabled.
///
///   Loom users are probably already aware that `loom`'s simulated
///   types cannot be const initialized, as they must bind to the *current* test
///   iteration when constructed. This is not a non-additive feature flag,
///   because `loom` support can only be enabled by a `RUSTFLAGS` cfg set by the
///   top-level build, and not by a dependency.`s`
///
/// [feature flags]: crate#features
/// [`loom` mutex]: https://docs.rs/loom/latest/loom/sync/struct.Mutex.html
/// [cs]: https://docs.rs/critical-section/latest/critical_section/fn.with.html
/// [`Spinlock`]: crate::spin::Spinlock
/// [overriding]: crate::blocking#overriding-mutex-implementations
/// [`RawMutex`]: mutex_traits::RawMutex
/// [cs-providing]:
///     https://docs.rs/critical-section/latest/critical_section/index.html#usage-in-no-std-binaries
/// [cs-link-err]:
///     https://docs.rs/critical-section/latest/critical_section/index.html#undefined-reference-errors
///
// N.B. that this is a wrapper type around the various impls, rather than just a
// re-export, because I didn't want to duplicate the docs for all the impls...
#[must_use = "why create a `DefaultMutex` if you're not going to lock it?"]
pub struct DefaultMutex(Inner);

impl DefaultMutex {
    loom_const_fn! {
        /// Returns a new `DefaultMutex`.
        ///
        /// See the [type-level documentation](Self) for details on how to use a `DefaultMutex`.
        // loom::sync::Mutex`'s constructor captures the location it's
        // constructed, so that we can track where it came from in test output.
        // That's nice, let's not break it!
        #[track_caller]
        #[inline]
        pub fn new() -> Self {
            Self(Inner::new())
        }
    }
}

impl Default for DefaultMutex {
    #[track_caller] // again, for Loom Reasons
    fn default() -> Self {
        Self::new()
    }
}

impl core::fmt::Debug for DefaultMutex {
    #[inline]
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        self.0.fmt(f)
    }
}

#[cfg(not(loom))]
impl ConstInit for DefaultMutex {
    // As is traditional, clippy is wrong about this.
    #[allow(clippy::declare_interior_mutable_const)]
    const INIT: Self = Self::new();
}

unsafe impl ScopedRawMutex for DefaultMutex {
    #[track_caller]
    fn with_lock<R>(&self, f: impl FnOnce() -> R) -> R {
        self.0.with_lock(f)
    }

    #[track_caller]
    fn try_with_lock<R>(&self, f: impl FnOnce() -> R) -> Option<R> {
        self.0.try_with_lock(f)
    }

    #[inline]
    fn is_locked(&self) -> bool {
        self.0.is_locked()
    }
}

#[cfg(loom)]
use loom_impl::LoomDefaultMutex as Inner;

#[cfg(all(not(loom), feature = "std"))]
use std_impl::StdDefaultMutex as Inner;

#[cfg(all(not(loom), not(feature = "std"), feature = "critical-section"))]
use cs_impl::CriticalSectionDefaultMutex as Inner;

#[cfg(all(not(loom), not(feature = "std"), not(feature = "critical-section")))]
use spin_impl::SpinDefaultMutex as Inner;

#[cfg(loom)]
mod loom_impl {
    use super::ScopedRawMutex;
    use core::panic::Location;
    use tracing::{debug, debug_span};

    #[derive(Debug)]
    pub(super) struct LoomDefaultMutex(loom::sync::Mutex<()>);

    impl LoomDefaultMutex {
        // loom::sync::Mutex`'s constructor captures the location it's
        // constructed, so that we can track where it came from in test output.
        // That's nice, let's not break it!
        #[track_caller]
        pub(super) fn new() -> Self {
            Self(loom::sync::Mutex::new(()))
        }
    }

    unsafe impl ScopedRawMutex for LoomDefaultMutex {
        #[track_caller]
        #[inline]
        fn with_lock<R>(&self, f: impl FnOnce() -> R) -> R {
            let location = Location::caller();
            trace!(
                target: "maitake_sync::blocking",
                %location,
                "DefaultMutex::with_lock()",
            );

            let guard = self.0.lock();
            let _span = debug_span!(
                target: "maitake_sync::blocking",
                "locked",
                %location,
            )
            .entered();
            debug!(
                target: "maitake_sync::blocking",
                "DefaultMutex::with_lock() -> locked",
            );

            let result = f();
            drop(guard);

            debug!(
                target: "maitake_sync::blocking",
                "DefaultMutex::with_lock() -> unlocked",
            );

            result
        }

        #[track_caller]
        #[inline]
        fn try_with_lock<R>(&self, f: impl FnOnce() -> R) -> Option<R> {
            let location = Location::caller();
            trace!(
                target: "maitake_sync::blocking",
                %location,
                "DefaultMutex::try_with_lock()",
            );

            match self.0.try_lock() {
                Ok(guard) => {
                    let _span = debug_span!(target: "maitake_sync::blocking", "locked", %location)
                        .entered();
                    debug!(
                        target: "maitake_sync::blocking",
                        "DefaultMutex::try_with_lock() -> locked",
                    );

                    let result = f();
                    drop(guard);

                    debug!(
                        target: "maitake_sync::blocking",
                        "DefaultMutex::try_with_lock() -> unlocked",
                    );

                    Some(result)
                }
                Err(_) => {
                    debug!(
                        target: "maitake_sync::blocking",
                        %location,
                        "DefaultMutex::try_with_lock() -> already locked",
                    );

                    None
                }
            }
        }

        fn is_locked(&self) -> bool {
            self.0.try_lock().is_err()
        }
    }
}

#[cfg(all(not(loom), feature = "std"))]
mod std_impl {
    use super::ScopedRawMutex;
    #[derive(Debug)]
    #[must_use]
    pub(super) struct StdDefaultMutex(std::sync::Mutex<()>);

    impl StdDefaultMutex {
        #[inline]
        pub(super) const fn new() -> Self {
            Self(std::sync::Mutex::new(()))
        }
    }

    unsafe impl ScopedRawMutex for StdDefaultMutex {
        #[track_caller]
        #[inline(always)]
        fn with_lock<R>(&self, f: impl FnOnce() -> R) -> R {
            let _guard = self.0.lock().unwrap();
            f()
        }

        #[track_caller]
        #[inline(always)]
        fn try_with_lock<R>(&self, f: impl FnOnce() -> R) -> Option<R> {
            let _guard = self.0.try_lock().ok()?;
            Some(f())
        }

        fn is_locked(&self) -> bool {
            self.0.try_lock().is_ok()
        }
    }
}

#[cfg(all(not(loom), not(feature = "std"), feature = "critical-section"))]
mod cs_impl {
    use super::ScopedRawMutex;
    use crate::spin::Spinlock;

    #[derive(Debug)]
    pub(super) struct CriticalSectionDefaultMutex(Spinlock);

    impl CriticalSectionDefaultMutex {
        #[inline]
        pub(super) const fn new() -> Self {
            Self(Spinlock::new())
        }
    }

    unsafe impl ScopedRawMutex for CriticalSectionDefaultMutex {
        #[track_caller]
        #[inline(always)]
        fn with_lock<R>(&self, f: impl FnOnce() -> R) -> R {
            self.0.with_lock(|| critical_section::with(|_cs| f()))
        }

        #[track_caller]
        #[inline(always)]
        fn try_with_lock<R>(&self, f: impl FnOnce() -> R) -> Option<R> {
            self.0.try_with_lock(|| critical_section::with(|_cs| f()))
        }

        #[inline]
        fn is_locked(&self) -> bool {
            self.0.is_locked()
        }
    }
}

#[cfg(all(not(loom), not(feature = "std"), not(feature = "critical-section")))]
mod spin_impl {
    use super::ScopedRawMutex;
    use crate::spin::Spinlock;

    #[derive(Debug)]
    pub(super) struct SpinDefaultMutex(Spinlock);

    impl SpinDefaultMutex {
        #[inline]
        pub(super) const fn new() -> Self {
            Self(Spinlock::new())
        }
    }

    unsafe impl ScopedRawMutex for SpinDefaultMutex {
        #[track_caller]
        #[inline(always)]
        fn with_lock<R>(&self, f: impl FnOnce() -> R) -> R {
            self.0.with_lock(f)
        }

        #[track_caller]
        #[inline(always)]
        fn try_with_lock<R>(&self, f: impl FnOnce() -> R) -> Option<R> {
            self.0.try_with_lock(f)
        }

        #[inline(always)]
        fn is_locked(&self) -> bool {
            self.0.is_locked()
        }
    }
}

#[cfg(test)]
mod test {
    use super::DefaultMutex;

    // Check that a `DefaultMutex` will always implement the traits we expect it
    // to.
    #[test]
    fn default_mutex_trait_impls() {
        fn assert_scoped_raw_mutex<T: mutex_traits::ScopedRawMutex>() {}
        fn assert_send_and_sync<T: Send + Sync>() {}
        fn assert_default<T: Default>() {}
        fn assert_debug<T: core::fmt::Debug>() {}

        assert_scoped_raw_mutex::<DefaultMutex>();
        assert_send_and_sync::<DefaultMutex>();
        assert_default::<DefaultMutex>();
        assert_debug::<DefaultMutex>();
    }

    // Check that a non-`loom` `DefaultMutex` has a const-fn constructor, and
    // implements `ConstInit`.
    #[cfg(not(loom))]
    #[test]
    fn const_constructor() {
        fn assert_const_init<T: mutex_traits::ConstInit>() {}

        assert_const_init::<DefaultMutex>();

        static _MY_COOL_MUTEX: DefaultMutex = DefaultMutex::new();
    }
}