1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
use crate::{
blocking::DefaultMutex,
loom::cell::{MutPtr, UnsafeCell},
util::fmt,
};
use core::{
marker::PhantomData,
ops::{Deref, DerefMut},
};
pub use mutex_traits::{RawMutex, ScopedRawMutex};
/// A blocking mutual exclusion lock for protecting shared data.
/// Each mutex has a type parameter which represents
/// the data that it is protecting. The data can only be accessed through the
/// RAII guards returned from [`lock`] and [`try_lock`], or within the closures
/// passed to [`with_lock`] and [`try_with_lock`], which guarantees that
/// the data is only ever accessed when the mutex is locked.
///
/// # Fairness
///
/// This is *not* a fair mutex.
///
/// # Overriding mutex implementations
///
/// This type is generic over a `Lock` type parameter which represents a raw
/// mutex implementation. By default, this is the [`DefaultMutex`]. To construct
/// a new `Mutex` with an alternative raw mutex implementation, use the
/// [`Mutex::new_with_raw_mutex`] cosntructor. See the [module-level documentation
/// on overriding mutex
/// implementations](crate::blocking#overriding-mutex-implementations) for
/// more details.
///
/// When `Lock` implements the [`RawMutex`] trait, the [`Mutex`] type provides
/// the [`lock`] and [`try_lock`] methods, which return a RAII [`MutexGuard`],
/// similar to the [`std::sync::Mutex`] API, in addition to the scoped
/// [`with_lock`] and [`try_with_lock`] methods. When `Lock` only implements
/// [`ScopedRawMutex`], the [`Mutex`] type provides only the scoped
/// [`with_lock`] and [`try_with_lock`] methods.
///
/// :warning: Note that [`DefaultMutex`] does *not* implement `RawMutex`, so
/// using the [`lock`] and [`try_lock`] RAII API requires selecting an
/// alternative [`RawMutex`] implementation.
///
/// # Loom-specific behavior
///
/// When `cfg(loom)` is enabled, this mutex will use Loom's simulated atomics,
/// checked `UnsafeCell`, and simulated spin loop hints.
///
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
/// [`with_lock`]: Mutex::with_lock
/// [`try_with_lock`]: Mutex::try_with_lock
/// [`std::sync::Mutex`]: https://doc.rust-lang.org/stable/std/sync/struct.Mutex.html
pub struct Mutex<T, Lock = DefaultMutex> {
lock: Lock,
data: UnsafeCell<T>,
}
/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] and [`DerefMut`] implementations.
///
/// This structure is created by the [`lock`] and [`try_lock`] methods on
/// [`Mutex`].
///
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
#[must_use = "if unused, the `Mutex` will immediately unlock"]
pub struct MutexGuard<'a, T, Lock: RawMutex> {
ptr: MutPtr<T>,
lock: &'a Lock,
_marker: PhantomData<Lock::GuardMarker>,
}
impl<T> Mutex<T> {
loom_const_fn! {
/// Returns a new `Mutex` protecting the provided `data`.
///
/// The returned `Mutex` is in an unlocked state, ready for use.
///
/// This constructor returns a mutex that uses the [`DefaultMutex`]
/// implementation. To use an alternative `RawMutex` type, use the
/// [`new_with_raw_mutex`](Self::new_with_raw_mutex) constructor, instead.
///
/// # Examples
///
/// ```
/// use maitake_sync::blocking::Mutex;
///
/// let mutex = Mutex::new(0);
/// ```
#[must_use]
pub fn new(data: T) -> Self {
Self {
lock: DefaultMutex::new(),
data: UnsafeCell::new(data),
}
}
}
}
impl<T, Lock> Mutex<T, Lock> {
loom_const_fn! {
/// Returns a new `Mutex` protecting the provided `data`, using
/// `lock` type parameter as the raw mutex implementation.
///
/// See the [module-level documentation on overriding mutex
/// implementations](crate::blocking#overriding-mutex-implementations) for
/// more details.
///
/// The returned `Mutex` is in an unlocked state, ready for use.
#[must_use]
pub fn new_with_raw_mutex(data: T, lock: Lock) -> Self {
Self {
lock,
data: UnsafeCell::new(data),
}
}
}
/// Consumes this `Mutex`, returning the guarded data.
#[inline]
#[must_use]
pub fn into_inner(self) -> T {
self.data.into_inner()
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the `Mutex` mutably, no actual locking needs to
/// take place -- the mutable borrow statically guarantees no locks exist.
///
/// # Examples
///
/// ```
/// let mut lock = maitake_sync::blocking::Mutex::new(0);
/// lock.with_lock(|data| *data = 10);
/// assert_eq!(*lock.get_mut(), 10);
/// ```
pub fn get_mut(&mut self) -> &mut T {
unsafe {
// Safety: since this call borrows the `Mutex` mutably, no actual
// locking needs to take place -- the mutable borrow statically
// guarantees no locks exist.
self.data.with_mut(|data| &mut *data)
}
}
}
impl<T, Lock: ScopedRawMutex> Mutex<T, Lock> {
/// Lock this `Mutex`, blocking if it is not currently unlocked, and call
/// `f()` with the locked data once the lock is acquired.
///
/// When the `Mutex` is unlocked, this method locks it, calls `f()` with the
/// data protected by the `Mutex`, and then unlocks the `Mutex` and returns
/// the result of `f()`. If the `Mutex` is locked, this method blocks until
/// it is unlocked, and then takes the lock.
///
/// To return immediately rather than blocking, use [`Mutex::try_with_lock`]
/// instead.
///
/// This method is available as long as the `Mutex`'s `Lock` type parameter
/// implements the [`ScopedRawMutex`] trait. See the [module-level
/// documentation on overriding mutex
/// implementations](crate::blocking#overriding-mutex-implementations) for
/// more details.
#[track_caller]
pub fn with_lock<U>(&self, f: impl FnOnce(&mut T) -> U) -> U {
self.lock.with_lock(|| {
self.data.with_mut(|data| unsafe {
// Safety: we just locked the mutex.
f(&mut *data)
})
})
}
/// Attempt to lock this `Mutex` without blocking and call `f()` with the
/// locked data if the lock is acquired.
///
/// If the `Mutex` is unlocked, this method locks it, calls `f()` with the
/// data protected by the `Mutex`, and then unlocks the `Mutex` and returns
/// [`Some`]`(U)`. Otherwise, if the lock is already held, this method
/// returns `None` immediately, without blocking.
///
/// To block until the `Mutex` is unlocked instead of returning `None`, use
/// [`Mutex::with_lock`] instead.
///
/// This method is available as long as the `Mutex`'s `Lock` type parameter
/// implements the [`ScopedRawMutex`] trait. See the [module-level
/// documentation on overriding mutex
/// implementations](crate::blocking#overriding-mutex-implementations) for
/// more details.
///
/// # Returns
///
/// - [`Some`]`(U)` if the lock was acquired, containing the result of
/// `f()`.
/// - [`None`] if the lock is currently held and could not be acquired
/// without blocking.
#[track_caller]
pub fn try_with_lock<U>(&self, f: impl FnOnce(&mut T) -> U) -> Option<U> {
self.lock.try_with_lock(|| {
self.data.with_mut(|data| unsafe {
// Safety: we just locked the mutex.
f(&mut *data)
})
})
}
}
impl<T, Lock> Mutex<T, Lock>
where
Lock: RawMutex,
{
fn guard(&self) -> MutexGuard<'_, T, Lock> {
MutexGuard {
ptr: self.data.get_mut(),
lock: &self.lock,
_marker: PhantomData,
}
}
/// Attempts to acquire this lock without blocking
///
/// If the lock could not be acquired at this time, then [`None`] is returned.
/// Otherwise, an RAII guard is returned. The lock will be unlocked when the
/// guard is dropped.
///
/// This function will never block.
///
/// This method is only availble if the `Mutex`'s `Lock` type parameter
/// implements the [`RawMutex`] trait. See the [module-level documentation
/// on overriding mutex
/// implementations](crate::blocking#overriding-mutex-implementations) for
/// more details.
#[must_use]
#[cfg_attr(test, track_caller)]
pub fn try_lock(&self) -> Option<MutexGuard<'_, T, Lock>> {
if self.lock.try_lock() {
Some(self.guard())
} else {
None
}
}
/// Acquires a mutex, blocking until it is locked.
///
/// This function will block until the mutex is available to lock. Upon
/// returning, the thread is the only thread with the lock
/// held. An RAII guard is returned to allow scoped unlock of the lock. When
/// the guard goes out of scope, the mutex will be unlocked.
///
/// This method is only availble if the `Mutex`'s `Lock` type parameter
/// implements the [`RawMutex`] trait. See the [module-level documentation
/// on overriding mutex
/// implementations](crate::blocking#overriding-mutex-implementations) for
/// more details.
#[cfg_attr(test, track_caller)]
pub fn lock(&self) -> MutexGuard<'_, T, Lock> {
self.lock.lock();
self.guard()
}
/// Forcibly unlock the mutex.
///
/// If a lock is currently held, it will be released, regardless of who's
/// holding it. Of course, this is **outrageously, disgustingly unsafe** and
/// you should never do it.
///
/// This method is only availble if the `Mutex`'s `Lock` type parameter
/// implements the [`RawMutex`] trait. See the [module-level documentation
/// on overriding mutex
/// implementations](crate::blocking#overriding-mutex-implementations) for
/// more details.
///
/// # Safety
///
/// This deliberately violates mutual exclusion.
///
/// Only call this method when it is _guaranteed_ that no stack frame that
/// has previously locked the mutex will ever continue executing.
/// Essentially, this is only okay to call when the kernel is oopsing and
/// all code running on other cores has already been killed.
pub unsafe fn force_unlock(&self) {
self.lock.unlock()
}
}
impl<T: Default, Lock: Default> Default for Mutex<T, Lock> {
fn default() -> Self {
Self {
lock: Default::default(),
data: UnsafeCell::new(Default::default()),
}
}
}
impl<T, Lock> fmt::Debug for Mutex<T, Lock>
where
T: fmt::Debug,
Lock: ScopedRawMutex,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.try_with_lock(|data| {
f.debug_struct("Mutex")
.field("data", data)
.field("lock", &format_args!("{}", core::any::type_name::<Lock>()))
.finish()
})
.unwrap_or_else(|| {
f.debug_struct("Mutex")
.field("data", &format_args!("<locked>"))
.field("lock", &format_args!("{}", core::any::type_name::<Lock>()))
.finish()
})
}
}
unsafe impl<T: Send, Lock: Send> Send for Mutex<T, Lock> {}
/// A `Mutex` is [`Sync`] if `T` is [`Send`] and `Lock` is [`Sync`].
///
/// `T` must be [`Send`] because shared references to the `Mutex` allow mutable
/// access to `T` (via a [`MutexGuard`] or [`Mutex::with_lock`]), which can be
/// used to move `T` between threads using [`core::mem::replace`] or similar.
/// `T` does **not** need to be [`Sync`], and, in fact, a `Mutex` is often used
/// to protect `!Sync` data.
///
/// The `Lock` type must be `Sync` because sharing references to a mutex
/// implicitly share references to the `Lock` type as well --- locking the mutex
/// references it.
unsafe impl<T: Send, Lock: Sync> Sync for Mutex<T, Lock> {}
// === impl MutexGuard ===
impl<T, Lock: RawMutex> Deref for MutexGuard<'_, T, Lock> {
type Target = T;
#[inline]
fn deref(&self) -> &Self::Target {
unsafe {
// Safety: we are holding the lock, so it is okay to dereference the
// mut pointer.
&*self.ptr.deref()
}
}
}
impl<T, Lock: RawMutex> DerefMut for MutexGuard<'_, T, Lock> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe {
// Safety: we are holding the lock, so it is okay to dereference the
// mut pointer.
self.ptr.deref()
}
}
}
impl<T, Lock, R: ?Sized> AsRef<R> for MutexGuard<'_, T, Lock>
where
T: AsRef<R>,
Lock: RawMutex,
{
#[inline]
fn as_ref(&self) -> &R {
self.deref().as_ref()
}
}
impl<T, Lock, R: ?Sized> AsMut<R> for MutexGuard<'_, T, Lock>
where
T: AsMut<R>,
Lock: RawMutex,
{
#[inline]
fn as_mut(&mut self) -> &mut R {
self.deref_mut().as_mut()
}
}
impl<T, Lock> Drop for MutexGuard<'_, T, Lock>
where
Lock: RawMutex,
{
#[inline]
#[cfg_attr(test, track_caller)]
fn drop(&mut self) {
unsafe { self.lock.unlock() }
}
}
impl<T, Lock> fmt::Debug for MutexGuard<'_, T, Lock>
where
T: fmt::Debug,
Lock: RawMutex,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.deref().fmt(f)
}
}
impl<T, Lock> fmt::Display for MutexGuard<'_, T, Lock>
where
T: fmt::Display,
Lock: RawMutex,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.deref().fmt(f)
}
}
/// A [`MutexGuard`] is only [`Send`] if:
///
/// 1. the protected data (`T`) is `Send`, because the guard may be used to
/// mutably access the protected data, and can therefore be used to move it
/// using [`core::mem::replace`] or similar.
/// 2. the `Lock` type parameter is [`Sync`], because the guard contains a
/// reference to the `Lock` type, and therefore, sending the guard is sharing
/// a reference to the `Lock`.
/// 3. the `Lock` type's [`RawMutex::GuardMarker`] associated type is [`Send`],
/// because this indicates that the `Lock` type agrees that guards may be
/// [`Send`].
unsafe impl<T, Lock> Send for MutexGuard<'_, T, Lock>
where
T: Send,
Lock: RawMutex + Sync,
Lock::GuardMarker: Send,
{
}
#[cfg(test)]
mod tests {
use crate::loom::{self, thread};
use crate::spin::Spinlock;
use std::prelude::v1::*;
use std::sync::Arc;
use super::*;
#[test]
fn multithreaded() {
loom::model(|| {
let mutex = Arc::new(Mutex::new_with_raw_mutex(String::new(), Spinlock::new()));
let mutex2 = mutex.clone();
let t1 = thread::spawn(move || {
tracing::info!("t1: locking...");
let mut lock = mutex2.lock();
tracing::info!("t1: locked");
lock.push_str("bbbbb");
tracing::info!("t1: dropping...");
});
{
tracing::info!("t2: locking...");
let mut lock = mutex.lock();
tracing::info!("t2: locked");
lock.push_str("bbbbb");
tracing::info!("t2: dropping...");
}
t1.join().unwrap();
});
}
#[test]
fn try_lock() {
loom::model(|| {
let mutex = Mutex::new_with_raw_mutex(42, Spinlock::new());
// First lock succeeds
let a = mutex.try_lock();
assert_eq!(a.as_ref().map(|r| **r), Some(42));
// Additional lock failes
let b = mutex.try_lock();
assert!(b.is_none());
// After dropping lock, it succeeds again
::core::mem::drop(a);
let c = mutex.try_lock();
assert_eq!(c.as_ref().map(|r| **r), Some(42));
});
}
}