1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
//! Procedural macros to derive minicbor's `Encode` and `Decode` traits.
//!
//! Deriving is supported for `struct`s and `enum`s. The encoding is optimised
//! for forward and backward compatibility and the overall approach is
//! influenced by [Google's Protocol Buffers][1].
//!
//! The goal is that ideally a change to a type still allows older software,
//! which is unaware of the changes, to decode values of the changed type
//! (forward compatibility) and newer software, to decode values of types
//! encoded by older software, which do not include the changes made to the
//! type (backward compatibility).
//!
//! In order to reach this goal, the encoding has the following characteristics:
//!
//! 1. The encoding does not contain any names, i.e. no field names, type names
//! or variant names. Instead, every field and every constructor needs to be
//! annotated with an (unsigned) index number, e.g. `#[n(1)]`.
//!
//! 2. Unknown fields are ignored during decoding.
//!
//! 3. Optional types default to `None` if their value is not present during
//! decoding.
//!
//! 4. Optional enums default to `None` if an unknown variant is encountered
//! during decoding.
//!
//! Item **1** ensures that names can be changed freely without compatibility
//! concerns. Item **2** ensures that new fields do not affect older software.
//! Item **3** ensures that newer software can stop producing optional values.
//! Item **4** ensures that enums can get new variants that older software is
//! not aware of. By "fields" we mean the elements of structs and tuple structs
//! as well as enum structs and enum tuples. In addition, it is a compatible
//! change to turn a unit variant into a struct or tuple variant if all fields
//! are optional.
//!
//! From the above it should be obvious that *non-optional fields need to be
//! present forever*, so they should only be part of a type after careful
//! consideration.
//!
//! It should be emphasised that an `enum` itself can not be changed in a
//! compatible way. An unknown variant causes an error. It is only when they
//! are declared as an optional field type that unknown variants of an enum
//! are mapped to `None`. In other words, *only structs can be used as
//! top-level types in a forward and backward compatible way, enums can not.*
//!
//! # Example
//!
//! ```
//! use minicbor::{Encode, Decode};
//!
//! #[derive(Encode, Decode)]
//! struct Point {
//!     #[n(0)] x: f64,
//!     #[n(1)] y: f64
//! }
//!
//! #[derive(Encode, Decode)]
//! struct ConvexHull {
//!     #[n(0)] left: Point,
//!     #[n(1)] right: Point,
//!     #[n(2)] points: Vec<Point>,
//!     #[n(3)] state: Option<State>
//! }
//!
//! #[derive(Encode, Decode)]
//! enum State {
//!     #[n(0)] Start,
//!     #[n(1)] Search { #[n(0)] info: u64 }
//! }
//! ```
//!
//! In this example the following changes would be compatible in both
//! directions:
//!
//! - Renaming every identifier.
//!
//! - Adding optional fields to `Point`, `ConvexHull`, `State::Start` or
//! `State::Search`.
//!
//! - Adding more variants to `State` *iff* `State` is only decoded as part of
//! `ConvexHull`. Direct decoding of `State` would produce an `UnknownVariant`
//! error for those new variants.
//!
//! [1]: https://developers.google.com/protocol-buffers/
//!
//! # Supported attributes
//!
//! - [`#[n(...)]` and `#[cbor(n(...))]`](#n-and-b-or-cborn-and-cborb)
//! - [`#[b(...)]` and `#[cbor(b(...))]`](#n-and-b-or-cborn-and-cborb)
//! - [`#[cbor(array)]`](#cborarray)
//! - [`#[cbor(map)]`](#cbormap)
//! - [`#[cbor(index_only)]`](#cborindex_only)
//! - [`#[cbor(transparent)]`](#cbortransparent)
//! - [`#[cbor(decode_with)]`](#cbordecode_with--path)
//! - [`#[cbor(encode_with)]`](#cborencode_with--path)
//! - [`#[cbor(with)]`](#cborwith--path)
//! - [`#[cbor(nil)]`](#cbornil--path)
//! - [`#[cbor(has_nil)]`](#cborhas_nil)
//! - [`#[cbor(is_nil)]`](#cboris_nil--path)
//! - [`#[cbor(decode_bound)]`](#cbordecode_bound--)
//! - [`#[cbor(encode_bound)]`](#cborencode_bound--)
//! - [`#[cbor(bound)]`](#cborbound)
//!
//! ## `#[n(...)]` and `#[b(...)]` (or `#[cbor(n(...))]` and `#[cbor(b(...))]`)
//!
//! Each field and variant needs to be annotated with an index number, which is
//! used instead of the name. For the encoding it makes no difference which one
//! to choose. For decoding, `b` indicates that the value borrows from the
//! decoding input, whereas `n` produces non-borrowed values (but see section
//! [Implicit borrowing](#implicit-borrowing) below). This means that if a type
//! is annotated with `#[b(...)]`, all its lifetimes will be constrained to the
//! input lifetime (`'bytes`). Further, if the type is a `std::borrow::Cow<'_, str>`
//! or `std::borrow::Cow<'_, minicbor::bytes::ByteSlice>`, the generated code
//! will decode the `str` or `ByteSlice` and construct a `Cow::Borrowed` variant,
//! contrary to the regular `Cow` impl of `Decode` which produces owned values.
//!
//! ## `#[cbor(array)]`
//!
//! Uses a CBOR array to encode the annotated struct, enum or enum variant.
//! When used with an enum it applies to all its variants but can be overriden
//! per variant. See section [CBOR encoding](#cbor-encoding) for details.
//!
//! If neither `#[cbor(array)]` nor `#[cbor(map)]` are specified, `#[cbor(array)]`
//! is used by default.
//!
//! ## `#[cbor(map)]`
//!
//! Use a CBOR map to encode the annotated struct, enum or enum variant.
//! When used with an enum it applies to all its variants but can be overriden
//! per variant. See section [CBOR encoding](#cbor-encoding) for details.
//!
//! If neither `#[cbor(array)]` nor `#[cbor(map)]` are specified, `#[cbor(array)]`
//! is used by default.
//!
//! ## `#[cbor(index_only)]`
//!
//! Enumerations which do not contain fields may have this attribute attached to
//! them. This changes the encoding to encode only the variant index (cf. section
//! [CBOR encoding](#cbor-encoding) for details).
//!
//! ## `#[cbor(transparent)]`
//!
//! This attribute can be attached to structs with exactly one field (aka newtypes).
//! If present, the generated `Encode` and `Decode` impls will just forward the
//! respective `encode` and `decode` calls to the inner type, i.e. the resulting
//! CBOR representation will be identical to the one of the inner type.
//!
//! ## `#[cbor(decode_with = "<path>")]`
//!
//! When applied to a field of type `T`, the function denoted by `<path>` will be
//! used to decode `T`. The function needs to be equivalent to the following type:
//!
//! ```no_run
//! use minicbor::decode::{Decoder, Error};
//!
//! fn decode<'b, T: 'b>(d: &mut Decoder<'b>) -> Result<T, Error> {
//!     todo!()
//! }
//! ```
//!
//! ## `#[cbor(encode_with = "<path>")]`
//!
//! When applied to a field of type `T`, the function denoted by `<path>` will be
//! used to encode `T`. The function needs to be equivalent to the following type:
//!
//! ```no_run
//! use minicbor::encode::{Encoder, Error, Write};
//!
//! fn encode<T, W: Write>(v: &T, e: &mut Encoder<W>) -> Result<(), Error<W::Error>> {
//!     todo!()
//! }
//! ```
//!
//! ## `#[cbor(with = "<path>")]`
//!
//! Combines [`#[cbor(decode_with = "...")]`](#cbordecode_with--path) and
//! [`#[cbor(encode_with = "...")]`](#cborencode_with--path). Here, `<path>` denotes
//! a module that contains functions named `encode` and `decode` that satisfy the
//! respective type signatures mentioned in `encode_with` and `decode_with`.
//!
//! ## `#[cbor(nil = "<path>")]`
//!
//! Only valid in conjuction with [`#[cbor(decode_with = "...")]`](#cbordecode_with--path).
//! If present, `<path>` denotes a function to create a nil-like value of type `T`.
//! See `minicbor::Decode::nil` for details. The function needs to be equivalent to the
//! following type:
//!
//! ```no_run
//! fn nil<T>() -> Option<T> {
//!     todo!()
//! }
//! ```
//!
//! ## `#[cbor(has_nil)]`
//!
//! Only valid in conjuction with [`#[cbor(with = "...")]`](#cborwith--path). If present,
//! the attribute signals that the module denoted by `with` also contains functions `nil`
//! and `is_nil` to create nil values and to check if a value is a nil value.
//!
//! ## `#[cbor(is_nil = "<path>")]`
//!
//! Only valid in conjuction with [`#[cbor(encode_with = "...")]`](#cborencode_with--path).
//! If present, `<path>` denotes a function to check if a value of type `T` is a
//! nil-like value. See `minicbor::Encode::is_nil` for details. The function needs to
//! be equivalent to the following type:
//!
//! ```no_run
//! fn is_nil<T>(v: &T) -> bool {
//!     todo!()
//! }
//! ```
//!
//! ## `#[cbor(decode_bound = "...")]`
//!
//! When applied to a generic field, this attribute overrides any implicit type
//! parameter bounds generated by `minicbor-derive` for the derived `Decode` impl.
//!
//! ## `#[cbor(encode_bound = "...")]`
//!
//! When applied to a generic field, this attribute overrides any implicit type
//! parameter bounds generated by `minicbor-derive` for the derived `Encode` impl.
//!
//! ## `#[cbor(bound)]`
//!
//! Combines [`#[cbor(encode_bound = "...")]`](#cborencode_bound--) and
//! [`#[cbor(decode_bound = "...")]`](#cbordecode_bound--), i.e. the bound applies
//! to the derived `Encode` and `Decode` impl.
//!
//! # Implicit borrowing
//!
//! Apart from the explicit borrowing with [`#[b(...)]`](#n-and-b-or-cborn-and-cborb),
//! the following types implicitly borrow from the decoding input, which means
//! their lifetimes are constrained by the input lifetime:
//!
//! - `&'_ str`
//! - `&'_ minicbor::bytes::ByteSlice`
//! - `Option<&'_ str>`
//! - `Option<&'_ minicbor::bytes::ByteSlice>`
//!
//! ## What about `&[u8]`?
//!
//! `&[u8]` is a special case of `&[T]`. The lack of trait impl specialisation
//! in Rust makes it difficult to provide optimised support for byte slices.
//! The generic `[T]` impl of `Encode` produces an array of `T`s. To specifically
//! encode to and decode from CBOR bytes, the types `ByteSlice`, `ByteArray` and
//! `ByteVec` are provided by `minicbor`. In addition, the attributes
//! `encode_with`, `decode_with` and `with` can be used with `&[u8]` when deriving,
//! e.g.
//!
//! ```
//! use minicbor::{Encode, Decode};
//!
//! #[derive(Encode, Decode)]
//! struct Foo<'a> {
//!     #[cbor(n(0), with = "minicbor::bytes")]
//!     field0: &'a [u8],
//!
//!     #[n(1)]
//!     #[cbor(encode_with = "minicbor::bytes::encode")]
//!     #[cbor(decode_with = "minicbor::bytes::decode")]
//!     field1: &'a [u8],
//!
//!     #[cbor(n(2), with = "minicbor::bytes")]
//!     field2: Option<&'a [u8]>,
//!
//!     #[cbor(n(3), with = "minicbor::bytes")]
//!     field3: Vec<u8>,
//!
//!     #[cbor(n(4), with = "minicbor::bytes")]
//!     field4: [u8; 16]
//! }
//! ```
//!
//! # CBOR encoding
//!
//! The CBOR values produced by a derived `Encode` implementation are of the
//! following formats.
//!
//! ## Structs
//!
//! ### Array encoding
//!
//! By default or if a struct has the [`#[cbor(array)]`](#cborarray) attribute,
//! it will be represented as a CBOR array. Its index numbers are represened by
//! the position of the field value in this array. Any gaps between index numbers
//! are filled with CBOR NULL values and `Option`s which are `None` likewise
//! end up as NULLs in this array.
//!
//! ```text
//! <<struct-as-array encoding>> =
//!     `array(n)`
//!         item_0
//!         item_1
//!         ...
//!         item_n
//! ```
//!
//! ### Map encoding
//!
//! If a struct has the [`#[cbor(map)]`](#cbormap) attribute attached, then it
//! will be represented as a CBOR map with keys corresponding to the numeric
//! index value:
//!
//! ```text
//! <<struct-as-map encoding>> =
//!     `map(n)`
//!         `0` item_0
//!         `1` item_1
//!         ...
//!          n  item_n
//! ```
//!
//! Optional fields whose value is `None` are not encoded.
//!
//! ## Enums
//!
//! Unless the [`#[cbor(index_only)]`](#cborindex_only) attribute is used for
//! enums without any fields, each enum variant is encoded as a two-element
//! array. The first element is the variant index and the second the actual
//! variant value. Otherwise, if enums do not have fields and the `index_only`
//! attribute is present, only the variant index is encoded:
//!
//! ```text
//! <<enum encoding>> =
//!     | `array(2)` n <<struct-as-array encoding>> ; if #[cbor(array)]
//!     | `array(2)` n <<struct-as-map encoding>>   ; if #[cbor(map)]
//!     | n                                         ; if #[cbor(index_only)]
//! ```
//!
//! ## Which encoding to use?
//!
//! The map encoding needs to represent the indexes explicitly in the encoding
//! which costs at least one extra byte per field value, whereas the array
//! encoding does not need to encode the indexes. On the other hand, absent
//! values, i.e. `None`s and gaps between indexes are not encoded with maps but
//! need to be encoded explicitly with arrays as NULLs which need one byte each.
//! Which encoding to choose depends therefore on the nature of the type that
//! should be encoded:
//!
//! - *Dense types* are types which contain only few `Option`s or their `Option`s
//! are assumed to be `Some`s usually. They are best encoded as arrays.
//!
//! - *Sparse types* are types with many `Option`s and their `Option`s are usually
//! `None`s. They are best encoded as maps.
//!
//! When selecting the encoding, future changes to the type should be considered
//! as they may turn a dense type into a sparse one over time. This also applies
//! to [`#[cbor(index_only)]`](#cborindex_only) which should be used only with
//! enums which are not expected to ever have fields in their variants.

#![allow(clippy::many_single_char_names)]

extern crate proc_macro;

mod decode;
mod encode;

pub(crate) mod attrs;
pub(crate) mod fields;
pub(crate) mod lifetimes;
pub(crate) mod variants;

use std::collections::HashSet;

/// Derive the `minicbor::Decode` trait for a struct or enum.
///
/// See the [crate] documentation for details.
#[proc_macro_derive(Decode, attributes(n, b, cbor))]
pub fn derive_decode(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    decode::derive_from(input)
}

/// Derive the `minicbor::Encode` trait for a struct or enum.
///
/// See the [crate] documentation for details.
#[proc_macro_derive(Encode, attributes(n, b, cbor))]
pub fn derive_encode(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    encode::derive_from(input)
}

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum Mode {
    Encode,
    Decode
}

// Helpers ////////////////////////////////////////////////////////////////////

/// Check if the given type is an `Option` whose inner type matches the predicate.
fn is_option(ty: &syn::Type, pred: impl FnOnce(&syn::Type) -> bool) -> bool {
    if let syn::Type::Path(t) = ty {
        if let Some(s) = t.path.segments.last() {
            if s.ident == "Option" {
                if let syn::PathArguments::AngleBracketed(b) = &s.arguments {
                    if b.args.len() == 1 {
                        if let syn::GenericArgument::Type(ty) = &b.args[0] {
                            return pred(ty)
                        }
                    }
                }
            }
        }
    }
    false
}

/// Check if the given type is a `Cow` whose inner type matches the predicate.
fn is_cow(ty: &syn::Type, pred: impl FnOnce(&syn::Type) -> bool) -> bool {
    if let syn::Type::Path(t) = ty {
        if let Some(s) = t.path.segments.last() {
            if s.ident == "Cow" {
                if let syn::PathArguments::AngleBracketed(b) = &s.arguments {
                    if b.args.len() == 2 {
                        if let syn::GenericArgument::Lifetime(_) = &b.args[0] {
                            if let syn::GenericArgument::Type(ty) = &b.args[1] {
                                return pred(ty)
                            }
                        }
                    }
                }
            }
        }
    }
    false
}

/// Check if the given type is a `&str`.
fn is_str(ty: &syn::Type) -> bool {
    if let syn::Type::Path(t) = ty {
        t.qself.is_none() && t.path.segments.len() == 1 && t.path.segments[0].ident == "str"
    } else {
        false
    }
}

/// Check if the given type is a `&[u8]`.
fn is_byte_slice(ty: &syn::Type) -> bool {
    if let syn::Type::Path(t) = ty {
        return t.qself.is_none() &&
            ((t.path.segments.len() == 1 && t.path.segments[0].ident == "ByteSlice")
                || (t.path.segments.len() == 2
                    && t.path.segments[0].ident == "bytes"
                    && t.path.segments[1].ident == "ByteSlice")
                || (t.path.segments.len() == 3
                    && t.path.segments[0].ident == "minicbor"
                    && t.path.segments[1].ident == "bytes"
                    && t.path.segments[2].ident == "ByteSlice"))
    }
    if let syn::Type::Slice(t) = ty {
        if let syn::Type::Path(t) = &*t.elem {
            t.qself.is_none() && t.path.segments.len() == 1 && t.path.segments[0].ident == "u8"
        } else {
            false
        }
    } else {
        false
    }
}

/// Traverse all field types and collect all type parameters along the way.
fn collect_type_params<'a, I>(all: &syn::Generics, fields: I) -> HashSet<syn::TypeParam>
where
    I: Iterator<Item = &'a syn::Field>
{
    use syn::visit::Visit;

    struct Collector {
        all: Vec<syn::Ident>,
        found: HashSet<syn::TypeParam>
    }

    impl<'a> Visit<'a> for Collector {
        fn visit_field(&mut self, f: &'a syn::Field) {
            if let syn::Type::Path(ty) = &f.ty {
                if let Some(t) = ty.path.segments.first() {
                    if self.all.contains(&t.ident) {
                        self.found.insert(syn::TypeParam::from(t.ident.clone()));
                    }
                }
            }
            self.visit_type(&f.ty)
        }

        fn visit_path(&mut self, p: &'a syn::Path) {
            if p.leading_colon.is_none() && p.segments.len() == 1 {
                let id = &p.segments[0].ident;
                if self.all.contains(id) {
                    self.found.insert(syn::TypeParam::from(id.clone()));
                }
            }
            syn::visit::visit_path(self, p)
        }
    }

    let mut c = Collector {
        all: all.type_params().map(|tp| tp.ident.clone()).collect(),
        found: HashSet::new()
    };

    for f in fields {
        c.visit_field(f)
    }

    c.found
}

fn add_bound_to_type_params<'a, I>
    ( bound: syn::TypeParamBound
    , params: I
    , blacklist: &HashSet<syn::TypeParam>
    , attrs: &[attrs::Attributes]
    , mode: Mode
    )
where
    I: IntoIterator<Item = &'a mut syn::TypeParam>
{
    let find_type_param = |t: &syn::TypeParam| attrs.iter()
        .find_map(|a| {
            a.type_params().and_then(|p| match mode {
                Mode::Encode => p.get_encode(&t.ident),
                Mode::Decode => p.get_decode(&t.ident)
            })
        });

    for p in params {
        if let Some(t) = find_type_param(p) {
            p.bounds.extend(t.bounds.iter().cloned())
        } else if !blacklist.contains(p) {
            p.bounds.push(bound.clone())
        }
    }
}