1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
//! This module provides a higher-level interface for the Clock Controller Unit (CCU).
//!
//! ## Provenance
//!
//! Portions of this file were ported from the `xboot` project. These portions were used
//! under the terms of the MIT license. Refer to `LICENSE-MIT` at top of this repo for
//! full license text. `xboot` copyright information:
//!
//! Copyright(c) 2007-2022 Jianjun Jiang <8192542@qq.com>
use d1_pac::CCU;
use d1_pac::DMAC;
use d1_pac::{SMHC0, SMHC1, SMHC2};
use d1_pac::{SPI0, SPI_DBI};
use d1_pac::{TWI0, TWI1, TWI2, TWI3};
use d1_pac::{UART0, UART1, UART2, UART3, UART4, UART5};
use crate::clint::Clint;
pub struct Ccu {
ccu: CCU,
}
#[derive(PartialEq)]
pub enum BusGating {
Mask,
Pass,
}
#[derive(PartialEq)]
pub enum BusReset {
Assert,
Deassert,
}
/// Trait to be implemented for module clocks that can be gated and reset
pub trait BusGatingResetRegister {
/// Enable or disable the clock gating bit
fn gating(ccu: &mut CCU, gating: BusGating);
/// Enable or disable the clock reset bit
fn reset(ccu: &mut CCU, reset: BusReset);
}
impl Ccu {
#[must_use]
pub fn new(ccu: CCU) -> Self {
Self { ccu }
}
#[must_use]
pub fn release(self) -> CCU {
self.ccu
}
/// De-assert the reset bit and enable the clock gating bit for the given module
pub fn enable_module<MODULE: BusGatingResetRegister>(&mut self, _mod: &mut MODULE) {
MODULE::reset(&mut self.ccu, BusReset::Deassert);
Clint::spin_delay_us(20);
MODULE::gating(&mut self.ccu, BusGating::Pass);
}
/// Disable the clock gating bit and assert the reset bit for the given module
pub fn disable_module<MODULE: BusGatingResetRegister>(&mut self, _mod: &mut MODULE) {
MODULE::gating(&mut self.ccu, BusGating::Mask);
// TODO: delay?
MODULE::reset(&mut self.ccu, BusReset::Assert);
}
/// Allow modules to configure their own clock on a PAC level
// TODO: find a good abstraction so we don't need this anymore
pub fn borrow_raw(&mut self) -> &mut CCU {
&mut self.ccu
}
/// Initialize the system clocks to the same default value that is also set by `xfel`
pub fn sys_clock_init(&mut self) {
// The clock initialization functions are ported to Rust, based on the C implementation in
// [xboot](https://github.com/xboot/xboot/blob/master/src/arch/riscv64/mach-d1/sys-clock.c)
self.set_pll_cpux_axi();
self.set_pll_periph0();
self.set_ahb();
self.set_apb();
// This is where `xboot` resets and enables the DMA bus gating register.
// We don't do that, because this is performed by the DMAC driver's
// initialization function, instead.
self.set_mbus();
macro_rules! set_module {
($module: ident) => {
if (self.ccu.$module.read().pll_en().bit_is_clear()) {
self.ccu.$module.modify(|_, w| {
w.pll_ldo_en().enable();
w.pll_en().enable();
w
});
self.ccu.$module.modify(|_, w| w.lock_enable().enable());
while self.ccu.$module.read().lock().bit_is_clear() {
core::hint::spin_loop();
}
Clint::spin_delay_us(20);
self.ccu.$module.modify(|_, w| w.lock_enable().disable());
}
};
}
set_module!(pll_peri_ctrl);
set_module!(pll_video0_ctrl);
set_module!(pll_video1_ctrl);
set_module!(pll_ve_ctrl);
set_module!(pll_audio0_ctrl);
set_module!(pll_audio1_ctrl);
}
fn set_pll_cpux_axi(&mut self) {
// Select DCXO (24 MHz) as CPU clock source.
// AXI divide ratio is 3, system APB clock ratio is 4.
self.ccu.riscv_clk.write(|w| {
w.clk_src_sel().hosc();
w.axi_div_cfg().variant(3);
w.div_cfg().variant(1);
w
});
Clint::spin_delay_us(1);
// Disable PLL gating
self.ccu
.pll_cpu_ctrl
.modify(|_, w| w.pll_output_gate().disable());
// Enable PLL LDO
self.ccu.pll_cpu_ctrl.modify(|_, w| w.pll_ldo_en().enable());
Clint::spin_delay_us(5);
// Set default clock to 1008 MHz
self.ccu.pll_cpu_ctrl.modify(|r, w| {
// undocumented part of register is cleared by xboot
unsafe { w.bits(r.bits() & !(0x3 << 16)) };
w.pll_m().variant(0);
w.pll_n().variant(41);
w
});
// Lock the CPU PLL
self.ccu
.pll_cpu_ctrl
.modify(|_, w| w.lock_enable().enable());
// Enable PLL
self.ccu.pll_cpu_ctrl.modify(|_, w| w.pll_en().enable());
// Wait until PLL is stable
while self.ccu.pll_cpu_ctrl.read().lock().bit_is_clear() {
core::hint::spin_loop();
}
Clint::spin_delay_us(20);
// Enable PLL gating
self.ccu
.pll_cpu_ctrl
.modify(|_, w| w.pll_output_gate().enable());
// Unlock the CPU PLL
self.ccu
.pll_cpu_ctrl
.modify(|_, w| w.lock_enable().disable());
Clint::spin_delay_us(1);
// Change the CPU clock source to PLL_CPU.
// Sets the RISC-V clock to 1008 MHz and the RISC-V AXI clock to 504 MHz.
self.ccu.riscv_clk.modify(|_, w| {
w.clk_src_sel().pll_cpu();
w.axi_div_cfg().variant(1);
w.div_cfg().variant(0);
w
});
Clint::spin_delay_us(1);
}
fn set_pll_periph0(&mut self) {
// Check if PLL_PERI has already been enabled
if self.ccu.pll_peri_ctrl.read().pll_en().bit_is_set() {
return;
}
// Change PSI source to DCXO (24 MHz)
self.ccu.psi_clk.modify(|_, w| w.clk_src_sel().hosc());
// Set the default value for PLL_N
self.ccu.pll_peri_ctrl.write(|w| w.pll_n().variant(0x63));
// Lock the PLL
self.ccu
.pll_peri_ctrl
.modify(|_, w| w.lock_enable().enable());
// Enable 'PLL_PERI(1X)', 'PLL_PERI(2X)' and 'PLL_PERI(800M)'
self.ccu.pll_peri_ctrl.modify(|_, w| w.pll_en().enable());
// Wait until PLL is stable
while self.ccu.pll_peri_ctrl.read().lock().bit_is_clear() {
core::hint::spin_loop();
}
Clint::spin_delay_us(20);
// Unlock the PLL
self.ccu
.pll_peri_ctrl
.modify(|_, w| w.lock_enable().disable());
}
fn set_ahb(&mut self) {
// This could potentially be done in a single write, but we follow
// the `xboot` implementation which also splits this in 2 operations.
self.ccu
.psi_clk
.write(|w| w.factor_m().variant(2).factor_n().n1());
self.ccu
.psi_clk
.modify(|_, w| w.clk_src_sel().pll_peri_1x());
Clint::spin_delay_us(1);
}
fn set_apb(&mut self) {
// This could potentially be done in a single write, but we follow
// the `xboot` implementation which also splits this in 2 operations.
self.ccu.apb_clk[0].write(|w| w.factor_m().variant(2).factor_n().n2());
self.ccu.apb_clk[0].modify(|_, w| w.clk_src_sel().pll_peri_1x());
Clint::spin_delay_us(1);
}
fn set_mbus(&mut self) {
// Reset the MBUS domain
self.ccu.mbus_clk.modify(|_, w| w.mbus_rst().deassert());
Clint::spin_delay_us(1);
// Enable MBUS master clock gating
self.ccu.mbus_mat_clk_gating.write(|w| {
w.dma_mclk_en().pass();
w.ve_mclk_en().pass();
w.ce_mclk_en().pass();
w.tvin_mclk_en().pass();
w.csi_mclk_en().pass();
w.g2d_mclk_en().pass();
w.riscv_mclk_en().pass();
w
});
}
}
macro_rules! impl_bgr {
($($MODULE:ident : ($reg:ident, $gating:ident, $reset:ident),)+) => {
$(
impl BusGatingResetRegister for $MODULE {
fn gating(ccu: &mut CCU, gating: BusGating) {
ccu.$reg.modify(|_, w| {
w.$gating().bit(gating == BusGating::Pass)
});
}
fn reset(ccu: &mut CCU, reset: BusReset) {
ccu.$reg.modify(|_, w| {
w.$reset().bit(reset == BusReset::Deassert)
});
}
}
)+
}
}
impl_bgr! {
DMAC: (dma_bgr, gating, rst),
SMHC0: (smhc_bgr, smhc0_gating, smhc0_rst),
SMHC1: (smhc_bgr, smhc1_gating, smhc1_rst),
SMHC2: (smhc_bgr, smhc2_gating, smhc2_rst),
SPI0: (spi_bgr, spi0_gating, spi0_rst),
SPI_DBI: (spi_bgr, spi1_gating, spi1_rst),
TWI0: (twi_bgr, twi0_gating, twi0_rst),
TWI1: (twi_bgr, twi1_gating, twi1_rst),
TWI2: (twi_bgr, twi2_gating, twi2_rst),
TWI3: (twi_bgr, twi3_gating, twi3_rst),
UART0: (uart_bgr, uart0_gating, uart0_rst),
UART1: (uart_bgr, uart1_gating, uart1_rst),
UART2: (uart_bgr, uart2_gating, uart2_rst),
UART3: (uart_bgr, uart3_gating, uart3_rst),
UART4: (uart_bgr, uart4_gating, uart4_rst),
UART5: (uart_bgr, uart5_gating, uart5_rst),
}