1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
// Note: We sometimes force a pass by ref mut to enforce exclusive access
#![allow(clippy::needless_pass_by_ref_mut)]
//! Drivers for the Allwinner D1's I²C/TWI peripherals.
//!
//! This module contains an implementation of a driver for controlling the
//! I²C hardware on the D1, which the D1 manual calls a TWI
//! (Two-Wire Interface), likely due to I²C being a trademark of
//! Phillips Semiconductor. The [`I2c0`] type in this module implements the
//! [`I2cService`] trait using the TWI hardware mapped to the `I2C0` pins on the
//! board's 40-pin Raspberry Pi header.
//!
//! The D1 has four separate TWI controllers, [`TWI0`], [`TWI1`], [`TWI2`], and
//! [`TWI3`]. The pin mapping for the 40-pin Pi header `I2C0` pins differs
//! between the MangoPi MQ Pro and the Lichee RV Dock. On the MQ Pro, [`TWI0`]
//! is used, with `SCL` on pin `PG12` and `SDA` on pin `PG13`. On the Lichee
//! RV Dock, [`TWI2`] is used instead, with `SCL` on pin `PB0` and `SDA` on
//! pin `PB1`. Separate constructors for the [`I2c0`] type,
//! [`I2c0::mq_pro`] and [`I2c0::lichee_rv_dock`], are provided to
//! configure the appropriate pins for each board.
//!
//! ## Implementation Notes
//!
//! The TWI hardware can be used in one of two modes: "TWI engine" mode, where
//! individual bytes are written/read from the I²C bus in an
//! interrupt handler, and "TWI driver" mode, where the TWI hardware can operate
//! at the level of I²C register read/writes using a DMA buffer. This
//! module currently only implements a driver for the "TWI engine" mode, since
//! it can model all forms of I²C operations. In the future, we will
//! likely want to opportunistically use the offload capabilities of the TWI
//! driver when the I²C transaction has the correct shape for
//! offloading, but this branch just implements the simpler TWI engine mode.
//!
//! The TWI hardware is a bit difficult to use correctly, so implementing this
//! was a bit of a struggle. In particular, it turns out that the generation of
//! I²C clock pulses occurs when the
//! [`TWI_CNTR`](d1_pac::twi::TWI_CNTR) register, which controls the TWI, is
//! written to.
//!
//! The driver works by sharing state between a driver task and an ISR, since
//! the TWI engine mode is interrupt driven. The shared state is "locked" by
//! disabling TWI interrupts temporarily while the driver task is writing to the
//! shared state, and resuming interrupts when a write to the shared state
//! completes. In theory, this driver is also safe for use on multi-core
//! hardware, since a single daemon task is responsible for all the non-ISR
//! writes to this shared state, but this doesn't actually matter, because the
//! D1 is an inherently single-core CPU.
//!
//! I believe that the I²C controller used in the D1 is from the
//! Marvell MV64xxx family, although I'm not sure which one in particular. Linux
//! has a driver for this device, which can be found [here][linux-driver].
//!
//! [linux-driver]: https://github.com/torvalds/linux/blob/995b406c7e972fab181a4bb57f3b95e59b8e5bf3/drivers/i2c/busses/i2c-mv64xxx.c
use core::{
cell::UnsafeCell,
future,
ops::{Deref, DerefMut},
task::{Poll, Waker},
};
use crate::ccu::Ccu;
use d1_pac::{twi, Interrupt, GPIO, TWI0, TWI1, TWI2, TWI3};
use kernel::{
comms::kchannel::KConsumer,
embedded_hal_async::i2c::{ErrorKind, NoAcknowledgeSource},
mnemos_alloc::containers::FixedVec,
registry,
services::i2c::{
messages::{OpKind, Transfer},
Addr, I2cService, Transaction,
},
Kernel,
};
use tracing::Level;
/// A TWI mapped to the Raspberry Pi header's I²C0 pins.
pub struct I2c0 {
isr: &'static IsrData,
twi: &'static twi::RegisterBlock,
/// Which TWI does this TWI Engine use?
int: (Interrupt, fn()),
}
/// Data used by a TWI interrupt.
struct IsrData {
data: UnsafeCell<TwiData>,
}
struct TwiDataGuard<'a> {
twi: &'a twi::RegisterBlock,
data: &'a mut TwiData,
}
struct TwiData {
state: State,
op: TwiOp,
err: Option<ErrorKind>,
waker: Option<Waker>,
}
static I2C0_ISR: IsrData = IsrData {
data: UnsafeCell::new(TwiData {
state: State::Idle,
op: TwiOp::None,
err: None,
waker: None,
}),
};
enum TwiOp {
Write {
buf: FixedVec<u8>,
pos: usize,
len: usize,
end: bool,
},
Read {
buf: FixedVec<u8>,
len: usize,
amt: usize,
end: bool,
},
None,
}
/// TWI state machine
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[allow(dead_code)] // TODO(eliza): implement 10-bit addresses
enum State {
Idle,
/// Waiting for a `START` condition to be sent
WaitForStart(Addr),
/// Waiting for a restart.
WaitForRestart(Addr),
/// Waiting for the target device to `ACK` the first 7 bits of an addr.
WaitForAddr1Ack(Addr),
/// Waiting for the target device to `ACK` the second half of a 10-bit addr.
WaitForAddr2Ack(Addr),
/// Waiting for the target device to `ACK` a data byte.
WaitForAck(Addr),
/// Waiting for the target device to send a data byte.
WaitForData(Addr),
}
// === impl I2c0 ===
impl I2c0 {
/// Initialize a TWI for the MangoPi MQ Pro's Pi header I²C0
/// pins. This configures TWI0 in TWI engine mode, with the MangoPi MQ Pro pin
/// mappings.
///
/// # Safety
///
/// - The TWI register block must not be concurrently written to.
/// - This function should be called only while running on a MangoPi MQ Pro
/// board.
pub unsafe fn mq_pro(mut twi: TWI0, ccu: &mut Ccu, gpio: &mut GPIO) -> Self {
// Step 1: Configure GPIO pin mappings.
gpio.pg_cfg1.modify(|_r, w| {
// on the Mango Pi MQ Pro, the pi header's I2C0 pins are mapped to
// TWI0 on PG12 and PG13:
// https://mangopi.org/_media/mq-pro-sch-v12.pdf
w.pg12_select().twi0_sck();
w.pg13_select().twi0_sda();
w
});
ccu.disable_module(&mut twi);
ccu.enable_module(&mut twi);
Self::init(
unsafe { &*TWI0::ptr() },
Interrupt::TWI0,
Self::handle_twi0_interrupt,
)
}
/// Initialize a TWI for the Lichee RV Dock's Pi header I²C0
/// pins. This configures TWI2 in TWI engine mode, with the Lichee RV pin
/// mappings.
///
/// # Safety
///
/// - The TWI register block must not be concurrently written to.
/// - This function should be called only while running on a Lichee RV
/// board.
pub unsafe fn lichee_rv_dock(mut twi: TWI2, ccu: &mut Ccu, gpio: &mut GPIO) -> Self {
// Step 1: Configure GPIO pin mappings.
gpio.pb_cfg0.modify(|_r, w| {
// on the Lichee RV Dock, the Pi header's I2C0 corresponds to TWI2, not
// TWI0 as on the MQ Pro.
// I2C0 SDA is mapped to TWI2 PB1, and I2C0 SCL is mapped to TWI2 PB0:
// https://dl.sipeed.com/fileList/LICHEE/D1/Lichee_RV-Dock/2_Schematic/Lichee_RV_DOCK_3516(Schematic).pdf
w.pb0_select().twi2_sck();
w.pb1_select().twi2_sda();
w
});
ccu.disable_module(&mut twi);
ccu.enable_module(&mut twi);
Self::init(
unsafe { &*TWI2::ptr() },
Interrupt::TWI2,
Self::handle_twi2_interrupt,
)
}
/// Returns the interrupt and ISR for this TWI.
pub fn interrupt(&self) -> (Interrupt, fn()) {
self.int
}
/// Handle a TWI 0 interrupt on the I2C0 pins.
fn handle_twi0_interrupt() {
let _isr = kernel::isr::Isr::enter();
let twi = unsafe { &*TWI0::PTR };
let data = unsafe {
// safety: it's okay to do this because this function can only be
// called from inside the ISR.
&mut (*I2C0_ISR.data.get())
};
data.advance_isr(twi, 0);
}
/// Handle a TWI 1 interrupt on the I2C0 pins.
#[allow(dead_code)] // may be used if we ever have a board that maps TWI1 to I2C0...
fn handle_twi1_interrupt() {
let _isr = kernel::isr::Isr::enter();
let twi = unsafe { &*TWI1::PTR };
let data = unsafe {
// safety: it's okay to do this because this function can only be
// called from inside the ISR.
&mut (*I2C0_ISR.data.get())
};
data.advance_isr(twi, 1);
}
/// Handle a TWI 2 interrupt on the I2C0 pins.
fn handle_twi2_interrupt() {
let _isr = kernel::isr::Isr::enter();
let twi = unsafe { &*TWI2::PTR };
let data = unsafe {
// safety: it's okay to do this because this function can only be
// called from inside the ISR.
&mut (*I2C0_ISR.data.get())
};
data.advance_isr(twi, 2);
}
/// Handle a TWI 3 interrupt on the I2C0 pins.
#[allow(dead_code)] // may be used if we ever have a board that maps TWI1 to I2C0...
fn handle_twi3_interrupt() {
let _isr = kernel::isr::Isr::enter();
let twi = unsafe { &*TWI3::PTR };
let data = unsafe {
// safety: it's okay to do this because this function can only be
// called from inside the ISR.
&mut (*I2C0_ISR.data.get())
};
data.advance_isr(twi, 3);
}
/// This assumes the GPIO pin mappings are already configured.
unsafe fn init(twi: &'static twi::RegisterBlock, int: Interrupt, isr: fn()) -> Self {
// soft reset bit
twi.twi_srst.write(|w| w.soft_rst().set_bit());
twi.twi_ccr.modify(|_r, w| {
// according to the data sheet, setting CLK_M = 11, CLK_N = 1
// means 100kHz.
// setting CLK_M to 2 instead would get us 400kHz.
w.clk_m().variant(2);
w.clk_n().variant(1);
w
});
// Step 6: Configure TWI_CNTR[BUS_EN] and TWI_CNTR[A_ACK], when using interrupt mode, set
// TWI_CNTR[INT_EN] to 1, and register the system interrupt. In slave mode, configure TWI_ADDR and
// TWI_XADDR registers to finish TWI initialization configuration
twi.twi_cntr.write(|w| {
w.bus_en().respond();
w.m_stp().set_bit();
w
});
// we only want to be the bus controller, so zero our address
twi.twi_addr.write(|w| w.sla().variant(0));
twi.twi_xaddr.write(|w| w.slax().variant(0));
Self {
twi,
isr: &I2C0_ISR,
int: (int, isr),
}
}
#[tracing::instrument(
name = "I2c0::register",
level = Level::INFO,
skip(kernel, self),
err(Debug),
)]
pub async fn register(
self,
kernel: &'static Kernel,
queued: usize,
) -> Result<(), registry::RegistrationError> {
let rx = kernel
.registry()
.bind_konly::<I2cService>(queued)
.await?
.into_request_stream(queued)
.await;
kernel.spawn(self.run(rx)).await;
tracing::info!("TWI driver task started");
Ok(())
}
#[tracing::instrument(name = "TWI", level = tracing::Level::INFO, skip(self, rx))]
async fn run(self, rx: registry::listener::RequestStream<I2cService>) {
tracing::info!("starting TWI driver task");
loop {
let registry::Message { msg, reply } = rx.next_request().await;
let addr = msg.body.addr;
// TODO(eliza): rewrite this to use the `Hello` API instead?
let (txn, rx) = Transaction::new(msg.body).await;
if let Err(error) = reply.reply_konly(msg.reply_with_body(|_| Ok(txn))).await {
tracing::warn!(?error, "client hung up...");
}
self.transaction(addr, rx).await;
}
}
#[tracing::instrument(level = tracing::Level::DEBUG, skip(self, txn))]
async fn transaction(&self, addr: Addr, txn: KConsumer<Transfer>) {
tracing::trace!("starting I2C transaction");
let mut guard = self.isr.lock(self.twi);
let mut started = false;
while let Ok(Transfer {
buf,
len,
end,
dir,
rsp,
}) = txn.dequeue_async().await
{
// setup TWI driver state for next op
guard.data.state = if started {
State::WaitForRestart(addr)
} else {
started = true;
State::WaitForStart(addr)
};
guard.data.op = match dir {
OpKind::Read => {
// setup read op
tracing::debug!("reading {len} bytes");
TwiOp::Read {
buf,
len,
amt: 0,
end,
}
}
OpKind::Write => {
// setup write op
tracing::debug!("writing {len} bytes");
TwiOp::Write {
buf,
pos: 0,
len,
end,
}
}
};
guard.wait_for_irq().await;
tracing::trace!(?dir, "TWI operation completed");
let res = if let Some(error) = guard.data.err.take() {
tracing::warn!(?error, ?dir, "TWI error");
Err(error)
} else {
match core::mem::replace(&mut guard.data.op, TwiOp::None) {
TwiOp::Read { buf, .. } => {
debug_assert_eq!(dir, OpKind::Read);
Ok(buf)
}
TwiOp::Write { buf, .. } => {
debug_assert_eq!(dir, OpKind::Write);
Ok(buf)
}
_ => unreachable!(),
}
};
if rsp.send(res).is_err() {
tracing::trace!("I2C transaction handle dropped");
break;
}
}
// transaction ended!
tracing::trace!("I2C transaction ended");
}
}
impl IsrData {
#[must_use]
fn lock<'a>(&'a self, twi: &'a twi::RegisterBlock) -> TwiDataGuard<'a> {
// disable TWI interrupts while holding the guard.
twi.twi_cntr.modify(|_r, w| w.int_en().low());
let data = unsafe { &mut *(self.data.get()) };
TwiDataGuard { data, twi }
}
}
impl Drop for TwiDataGuard<'_> {
fn drop(&mut self) {
self.twi.twi_cntr.modify(|_r, w| w.int_en().high());
}
}
impl TwiDataGuard<'_> {
async fn wait_for_irq(&mut self) {
let mut waiting = false;
future::poll_fn(|cx| {
if waiting {
self.twi.twi_cntr.modify(|_r, w| w.int_en().low());
return Poll::Ready(());
}
self.data.waker = Some(cx.waker().clone());
waiting = true;
self.twi.twi_cntr.modify(|_r, w| {
// we have to set M_STA and A_ACK as part of the same write that
// sets the INT_EN bit, or else we will potentially do something
// weird if we do two separate TWI_CNTR writes. setting all of
// these now, atomically, avoids weird cases where we send a
// START for some random address, as far as i can tell.
w.m_sta().set_bit();
w.int_en().high();
w.bus_en().respond();
w
});
Poll::Pending
})
.await;
}
}
impl Deref for TwiDataGuard<'_> {
type Target = TwiData;
fn deref(&self) -> &Self::Target {
&*self.data
}
}
impl DerefMut for TwiDataGuard<'_> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.data
}
}
impl TwiData {
fn advance_isr(&mut self, twi: &twi::RegisterBlock, num: u8) {
let status = {
let byte = twi.twi_stat.read().sta().bits();
match Status::try_from(byte) {
Ok(status) => status,
Err(error) => {
tracing::error!(status = ?format_args!("{byte:#x}"), %error, twi = num, "TWI{num} status invalid");
return;
}
}
};
let mut needs_wake = false;
tracing::trace!(?status, state = ?self.state, twi = num, "TWI{num} interrupt");
twi.twi_cntr.modify(|_cntr_r, cntr_w| {
self.state = match (self.state, status) {
(State::Idle, _) => {
cntr_w.m_stp().set_bit();
State::Idle
}
(State::WaitForStart(addr), Status::StartTransmitted) |
(State::WaitForRestart(addr), Status::RepeatedStartTransmitted) => {
let bits = {
// lowest bit is 1 if reading, 0 if writing.
let dir = match self.op {
TwiOp::Read { .. } => 0b1,
_ => 0b0,
};
let addr = match addr {
Addr::SevenBit(addr) => (addr & 0x7f) << 1,
Addr::TenBit(addr) => 0xf0 | ((addr & 0x300) >> 7) as u8,
};
addr | dir
};
// send the address
twi.twi_data.write(|w| w.data().variant(bits));
State::WaitForAddr1Ack(addr)
}
// Write address byte 2.
(State::WaitForAddr1Ack(Addr::TenBit(addr)), Status::Addr1ReadAcked) |
(State::WaitForAddr1Ack(Addr::TenBit(addr)), Status::Addr1WriteAcked) => {
twi.twi_data.write(|w| w.data().variant(addr as u8));
State::WaitForAddr2Ack(Addr::TenBit(addr))
}
// Last address byte was ACKed (write), so we can start sending data.
(State::WaitForAddr1Ack(addr @ Addr::SevenBit(_)), Status::Addr1WriteAcked) |
(State::WaitForAddr2Ack(addr @ Addr::TenBit(_)), Status::Addr2WriteAcked) =>
{
match &mut self.op {
TwiOp::Write { buf, ref mut pos, .. } => {
// send the first byte of data
let byte = buf.as_slice()[0];
tracing::trace!(twi = num, data = ?format_args!("{byte:#x}"), "TWI{num} write data");
twi.twi_data.write(|w| w.data().variant(byte));
*pos += 1;
State::WaitForAck(addr)
},
TwiOp::Read { .. } => unreachable!(
"if we sent an address with a write bit, we should be in a write state (was Read)"
),
TwiOp::None => unreachable!(
"if we sent an address with a write bit, we should be in a write state (was None)"
),
}
}
// Last address byte was ACKed (read), so we can start reading data.
(State::WaitForAddr1Ack(addr @ Addr::SevenBit(_)), Status::Addr1ReadAcked) |
(State::WaitForAddr2Ack(addr @ Addr::TenBit(_)), Status::Addr2ReadAcked) =>
// TODO(eliza): handle 10 bit addr...
{
match self.op {
TwiOp::Read { len, .. } => {
if len == 1 {
// if we are reading a single byte, clear the A_ACK
// flag so that we don't ACK the byte.
cntr_w.a_ack().clear_bit();
} else {
// otherwise, we'll want to ACK all but the
// final byte.
cntr_w.a_ack().set_bit();
}
State::WaitForData(addr)
}
TwiOp::None => unreachable!(
"if we sent an address with a read bit, we should be in a read state (was None)"
),
TwiOp::Write { .. } => unreachable!(
"if we sent an address with a read bit, we should be in a read state (was Write)"
),
}
}
(State::WaitForData(addr), Status::RxDataAcked) | (State::WaitForData(addr), Status::RxDataNacked) => {
match &mut self.op {
&mut TwiOp::Read { ref mut buf, len, amt: ref mut read, end } => {
let data = twi.twi_data.read().data().bits();
buf.try_push(data).expect("read buf should have space for data");
*read += 1;
let remaining = len - *read;
tracing::trace!(
twi = num,
data = ?format_args!("{data:#x}"),
end,
remaining,
"TWI{num} read data",
);
if remaining <= 1 {
// We have one byte left to read, so stop ACKing.
cntr_w.a_ack().clear_bit();
} else {
// We have more than one byte remaining, so
// continue ACKing.
cntr_w.a_ack().set_bit();
}
if remaining > 0 {
State::WaitForData(addr)
} else {
needs_wake = true;
// if this is the last operation in the
// transaction, send a STOP.
if end {
tracing::trace!(twi = num, "TWI{num} send STOP");
cntr_w.m_stp().set_bit();
State::Idle
} else {
// otherwise, send a repeated START for the
// next operation.
tracing::trace!(twi = num, "TWI{num} send repeated START");
cntr_w.m_sta().set_bit();
State::WaitForRestart(addr)
}
}
}
_ => unreachable!(),
}
}
(State::WaitForAck(addr), Status::TxDataAcked) => {
match &mut self.op {
&mut TwiOp::Write { ref mut buf, ref mut pos, len, end } => {
if *pos == len {
needs_wake = true;
// Send a repeated START for the read portion of
// the transaction.
if end {
tracing::trace!(twi = num, "TWI{num} send STOP");
cntr_w.m_stp().set_bit();
State::Idle
} else {
// otherwise, send a repeated START for the
// next operation.
cntr_w.m_sta().set_bit();
tracing::trace!(twi = num, "TWI{num} send repeated START");
State::WaitForRestart(addr)
}
} else {
// Send the next byte of data
let byte = buf.as_slice()[*pos];
tracing::trace!(
twi = num,
remaining = len - *pos,
data = ?format_args!("{byte:#x}"),
"TWI{num} write data"
);
twi.twi_data.write(|w| w.data().variant(byte));
*pos += 1;
State::WaitForAck(addr)
}
}
_ => unimplemented!(),
}
}
(_, status) => {
let error: ErrorKind = status.into_error();
tracing::warn!(?error, ?status, state = ?self.state, twi = num, "TWI{num} error");
self.err = Some(error);
cntr_w.m_stp().variant(true);
needs_wake = true;
State::Idle
}
};
if needs_wake {
if let Some(waker) = self.waker.take() {
waker.wake();
// If we are waking the driver task, we need to disable interrupts
// until the driver can prepare the next phase of the transaction.
cntr_w.int_en().low();
}
}
// Writing back to the TWI_CNTR register *with the INT_FLAG bit
// high* clears the interrupt. the D1 user manual never explains
// this, but it's the same behavior as the DMAC interrupts, and the
// Linux driver for the Marvell family mv64xxx has a special flag
// which changes it to write back to TWI_CNTR with INT_FLAG set on
// Allwinner hardware.
cntr_w.int_flag().set_bit();
cntr_w
});
}
}
unsafe impl Sync for IsrData {}
mycelium_bitfield::enum_from_bits! {
/// Values of the `TWI_STAT` register.
#[derive(Debug, Eq, PartialEq)]
enum Status<u8> {
/// 0x00: Bus error
BusError = 0x00,
/// 0x08: START condition transmitted
StartTransmitted = 0x08,
/// Ox10: Repeated START condition transmitted
RepeatedStartTransmitted = 0x10,
/// 0x18: Address + Write bit transmitted, ACK received
Addr1WriteAcked = 0x18,
/// 0x20: Address + Write bit transmitted, NACK received
Addr1WriteNacked = 0x20,
/// 0x28: Data byte transmitted in controller mode, ACK received
TxDataAcked = 0x28,
/// 0x30: Data byte transmitted in controller mode, ACK not received
TxDataNacked = 0x30,
/// 0x38: Arbitration lost in address or data byte
ArbitrationLost = 0x38,
/// 0x40: Address + Read bit transmitted, ACK received
Addr1ReadAcked = 0x40,
/// 0x48: Address + Read bit transmitted, ACK not received
Addr1ReadNacked = 0x48,
/// 0x50: Data byte received in controller mode, ACK transmitted
RxDataAcked = 0x50,
/// 0x58: Data byte received in controller mode, no ACK transmitted
RxDataNacked = 0x58,
/// 0x60: Target address and write bit received, ACK transmitted
TargetAddrWriteAcked = 0x60,
/// 0x68: Arbitration lost in the address as controller, target address
/// + Write bit recieved, ACK transmitted
ArbitrationLostTargetWrite = 0x68,
/// 0x70: General call address received, ACK transmitted
GeneralCall = 0x70,
/// 0x78: Arbitration lost in the address as controller, General Call
/// address transmitted, ACK received
ArbitrationLostGeneralCall = 0x78,
/// 0x80: Data byte recieved after target address received, ACK
/// transmitted.
TargetRxDataAcked = 0x80,
/// 0x80: Data byte recieved after target address received, no ACK
/// transmitted.
TargetRxDataNacked = 0x88,
/// 0x90: Data byte received after General Call received, ACK
/// transmitted.
GeneralCallRxDataAcked = 0x90,
/// 0x98: Data byte received after General Call received, no ACK
/// transmitted
GeneralCallRxDataNacked = 0x98,
/// 0xA0: STOP or repeated START condition received in target mode
TargetStopOrRepeatedStart = 0xA0,
/// 0xA8: Target address + Read bit received, ACK transmitted
TargetAddrReadAcked = 0xA8,
/// 0xB0: Arbitration lost in address as controller, target address +
/// Read bit received, ACK transmitted
ArbitrationLostTargetRead = 0xB0,
/// 0xB8: Data byte transmitted in target mode, ACK received
TargetTxDataAcked = 0xB8,
/// 0xC0: Data byte transmitted in target mode, ACK not received
TargetTxDataNacked = 0xC0,
/// 0xC8: Last data byte transmitted in target mode, ACK received
TargetTxLastDataAcked = 0xC8,
/// 0xD0: Second Address byte + Write bit transmitted, ACK received
Addr2WriteAcked = 0xD0,
/// 0xD8: Second Address byte + Write bit transmitted, ACK not received
Addr2WriteNacked = 0xD8,
/// 0xE0: Address 2 + Read bit received, ACK transmitted
///
/// Note that the D1 manual neglects to mention this state (and the
/// corresponding NACK state), but [it's in the Linux driver][linux], so
/// I presume it's real.alloc
///
/// [linux]:
/// https://github.com/torvalds/linux/blob/46670259519f4ee4ab378dc014798aabe77c5057/drivers/i2c/busses/i2c-mv64xxx.c#L57
Addr2ReadAcked = 0xE0,
/// 0xE8: Address 2 + Read bit received, ACK transmitted
///
/// Note that the D1 manual neglects to mention this state (and the
/// corresponding NACK state), but [it's in the Linux driver][linux], so
/// I presume it's real.alloc
///
/// [linux]:
/// https://github.com/torvalds/linux/blob/46670259519f4ee4ab378dc014798aabe77c5057/drivers/i2c/busses/i2c-mv64xxx.c#L58
Addr2ReadNacked = 0xE8,
/// 0xF8: No relevant status information, `INT_FLAG` = 0
None = 0xF8,
}
}
impl Status {
fn into_error(self) -> ErrorKind {
match self {
// Arbitration Lost errors
Self::ArbitrationLost
| Self::ArbitrationLostGeneralCall
| Self::ArbitrationLostTargetRead
| Self::ArbitrationLostTargetWrite => ErrorKind::ArbitrationLoss,
Self::BusError => ErrorKind::Bus,
// Address NACKed errors
Self::Addr1WriteNacked
| Self::Addr1ReadNacked
| Self::Addr2WriteNacked
| Self::Addr2ReadNacked => ErrorKind::NoAcknowledge(NoAcknowledgeSource::Address),
// Send data NACKed errors
Self::TxDataNacked | Self::TargetTxDataNacked => {
ErrorKind::NoAcknowledge(NoAcknowledgeSource::Data)
}
_ => ErrorKind::Other,
}
}
}