1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
//! This crate provides a stable, safe and scoped threadpool.
//!
//! It can be used to execute a number of short-lived jobs in parallel
//! without the need to respawn the underlying threads.
//!
//! Jobs are runnable by borrowing the pool for a given scope, during which
//! an arbitrary number of them can be executed. These jobs can access data of
//! any lifetime outside of the pools scope, which allows working on
//! non-`'static` references in parallel.
//!
//! For safety reasons, a panic inside a worker thread will not be isolated,
//! but rather propagate to the outside of the pool.
//!
//! # Examples:
//!
//! ```rust
//! extern crate scoped_threadpool;
//! use scoped_threadpool::Pool;
//!
//! fn main() {
//!     // Create a threadpool holding 4 threads
//!     let mut pool = Pool::new(4);
//!
//!     let mut vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
//!
//!     // Use the threads as scoped threads that can
//!     // reference anything outside this closure
//!     pool.scoped(|scope| {
//!         // Create references to each element in the vector ...
//!         for e in &mut vec {
//!             // ... and add 1 to it in a seperate thread
//!             scope.execute(move || {
//!                 *e += 1;
//!             });
//!         }
//!     });
//!
//!     assert_eq!(vec, vec![1, 2, 3, 4, 5, 6, 7, 8]);
//! }
//! ```

#![cfg_attr(all(feature="nightly", test), feature(test))]
#![cfg_attr(feature="nightly", feature(drop_types_in_const))]
#![cfg_attr(all(feature="nightly", test), feature(core_intrinsics))]
#![cfg_attr(feature="nightly", feature(const_fn))]
#![cfg_attr(feature="nightly", feature(const_unsafe_cell_new))]

#![warn(missing_docs)]

#[macro_use]
#[cfg(test)]
extern crate lazy_static;

use std::thread::{self, JoinHandle};
use std::sync::mpsc::{channel, Sender, Receiver, SyncSender, sync_channel, RecvError};
use std::sync::{Arc, Mutex};
use std::marker::PhantomData;
use std::mem;

enum Message {
    NewJob(Thunk<'static>),
    Join,
}

trait FnBox {
    fn call_box(self: Box<Self>);
}

impl<F: FnOnce()> FnBox for F {
    fn call_box(self: Box<F>) {
        (*self)()
    }
}

type Thunk<'a> = Box<FnBox + Send + 'a>;

impl Drop for Pool {
    fn drop(&mut self) {
        self.job_sender = None;
    }
}

/// A threadpool that acts as a handle to a number
/// of threads spawned at construction.
pub struct Pool {
    threads: Vec<ThreadData>,
    job_sender: Option<Sender<Message>>
}

struct ThreadData {
    _thread_join_handle: JoinHandle<()>,
    pool_sync_rx: Receiver<()>,
    thread_sync_tx: SyncSender<()>,
}

impl Pool {
    /// Construct a threadpool with the given number of threads.
    /// Minimum value is `1`.
    pub fn new(n: u32) -> Pool {
        assert!(n >= 1);

        let (job_sender, job_receiver) = channel();
        let job_receiver = Arc::new(Mutex::new(job_receiver));

        let mut threads = Vec::with_capacity(n as usize);

        // spawn n threads, put them in waiting mode
        for _ in 0..n {
            let job_receiver = job_receiver.clone();

            let (pool_sync_tx, pool_sync_rx) =
                sync_channel::<()>(0);
            let (thread_sync_tx, thread_sync_rx) =
                sync_channel::<()>(0);

            let thread = thread::spawn(move || {
                loop {
                    let message = {
                        // Only lock jobs for the time it takes
                        // to get a job, not run it.
                        let lock = job_receiver.lock().unwrap();
                        lock.recv()
                    };

                    match message {
                        Ok(Message::NewJob(job)) => {
                            job.call_box();
                        }
                        Ok(Message::Join) => {
                            // Syncronize/Join with pool.
                            // This has to be a two step
                            // process to ensure that all threads
                            // finished their work before the pool
                            // can continue

                            // Wait until the pool started syncing with threads
                            if pool_sync_tx.send(()).is_err() {
                                // The pool was dropped.
                                break;
                            }

                            // Wait until the pool finished syncing with threads
                            if thread_sync_rx.recv().is_err() {
                                // The pool was dropped.
                                break;
                            }
                        }
                        Err(..) => {
                            // The pool was dropped.
                            break
                        }
                    }
                }
            });

            threads.push(ThreadData {
                _thread_join_handle: thread,
                pool_sync_rx: pool_sync_rx,
                thread_sync_tx: thread_sync_tx,
            });
        }

        Pool {
            threads: threads,
            job_sender: Some(job_sender),
        }
    }

    /// Borrows the pool and allows executing jobs on other
    /// threads during that scope via the argument of the closure.
    ///
    /// This method will block until the closure and all its jobs have
    /// run to completion.
    pub fn scoped<'pool, 'scope, F, R>(&'pool mut self, f: F) -> R
        where F: FnOnce(&Scope<'pool, 'scope>) -> R
    {
        let scope = Scope {
            pool: self,
            _marker: PhantomData,
        };
        f(&scope)
    }

    /// Returns the number of threads inside this pool.
    pub fn thread_count(&self) -> u32 {
        self.threads.len() as u32
    }
}

/////////////////////////////////////////////////////////////////////////////

/// Handle to the scope during which the threadpool is borrowed.
pub struct Scope<'pool, 'scope> {
    pool: &'pool mut Pool,
    // The 'scope needs to be invariant... it seems?
    _marker: PhantomData<::std::cell::Cell<&'scope mut ()>>,
}

impl<'pool, 'scope> Scope<'pool, 'scope> {
    /// Execute a job on the threadpool.
    ///
    /// The body of the closure will be send to one of the
    /// internal threads, and this method itself will not wait
    /// for its completion.
    pub fn execute<F>(&self, f: F) where F: FnOnce() + Send + 'scope {
        self.execute_(f)
    }

    fn execute_<F>(&self, f: F) where F: FnOnce() + Send + 'scope {
        let b = unsafe {
            mem::transmute::<Thunk<'scope>, Thunk<'static>>(Box::new(f))
        };
        self.pool.job_sender.as_ref().unwrap().send(Message::NewJob(b)).unwrap();
    }

    /// Blocks until all currently queued jobs have run to completion.
    pub fn join_all(&self) {
        for _ in 0..self.pool.threads.len() {
            self.pool.job_sender.as_ref().unwrap().send(Message::Join).unwrap();
        }

        // Synchronize/Join with threads
        // This has to be a two step process
        // to make sure _all_ threads received _one_ Join message each.

        // This loop will block on every thread until it
        // received and reacted to its Join message.
        let mut worker_panic = false;
        for thread_data in &self.pool.threads {
            if let Err(RecvError) = thread_data.pool_sync_rx.recv() {
                worker_panic = true;
            }
        }
        if worker_panic {
            // Now that all the threads are paused, we can safely panic
            panic!("Thread pool worker panicked");
        }

        // Once all threads joined the jobs, send them a continue message
        for thread_data in &self.pool.threads {
            thread_data.thread_sync_tx.send(()).unwrap();
        }
    }
}

impl<'pool, 'scope> Drop for Scope<'pool, 'scope> {
    fn drop(&mut self) {
        self.join_all();
    }
}

/////////////////////////////////////////////////////////////////////////////

#[cfg(test)]
mod tests {
    #![cfg_attr(feature="nightly", allow(unused_unsafe))]

    use super::Pool;
    use std::thread;
    use std::sync;
    use std::time;

    fn sleep_ms(ms: u64) {
        thread::sleep(time::Duration::from_millis(ms));
    }

    #[test]
    fn smoketest() {
        let mut pool = Pool::new(4);

        for i in 1..7 {
            let mut vec = vec![0, 1, 2, 3, 4];
            pool.scoped(|s| {
                for e in vec.iter_mut() {
                    s.execute(move || {
                        *e += i;
                    });
                }
            });

            let mut vec2 = vec![0, 1, 2, 3, 4];
            for e in vec2.iter_mut() {
                *e += i;
            }

            assert_eq!(vec, vec2);
        }
    }

    #[test]
    #[should_panic]
    fn thread_panic() {
        let mut pool = Pool::new(4);
        pool.scoped(|scoped| {
            scoped.execute(move || {
                panic!()
            });
        });
    }

    #[test]
    #[should_panic]
    fn scope_panic() {
        let mut pool = Pool::new(4);
        pool.scoped(|_scoped| {
            panic!()
        });
    }

    #[test]
    #[should_panic]
    fn pool_panic() {
        let _pool = Pool::new(4);
        panic!()
    }

    #[test]
    fn join_all() {
        let mut pool = Pool::new(4);

        let (tx_, rx) = sync::mpsc::channel();

        pool.scoped(|scoped| {
            let tx = tx_.clone();
            scoped.execute(move || {
                sleep_ms(1000);
                tx.send(2).unwrap();
            });

            let tx = tx_.clone();
            scoped.execute(move || {
                tx.send(1).unwrap();
            });

            scoped.join_all();

            let tx = tx_.clone();
            scoped.execute(move || {
                tx.send(3).unwrap();
            });
        });

        assert_eq!(rx.iter().take(3).collect::<Vec<_>>(), vec![1, 2, 3]);
    }

    #[test]
    fn join_all_with_thread_panic() {
        use std::sync::mpsc::Sender;
        struct OnScopeEnd(Sender<u8>);
        impl Drop for OnScopeEnd {
            fn drop(&mut self) {
                self.0.send(1).unwrap();
                sleep_ms(200);
            }
        }
        let (tx_, rx) = sync::mpsc::channel();
        // Use a thread here to handle the expected panic from the pool. Should
        // be switched to use panic::recover instead when it becomes stable.
        let handle = thread::spawn(move || {
            let mut pool = Pool::new(8);
            let _on_scope_end = OnScopeEnd(tx_.clone());
            pool.scoped(|scoped| {
                scoped.execute(move || {
                    sleep_ms(100);
                    panic!();
                });
                for _ in 1..8 {
                    let tx = tx_.clone();
                    scoped.execute(move || {
                        sleep_ms(200);
                        tx.send(0).unwrap();
                    });
                }
            });
        });
        if let Ok(..) = handle.join() {
            panic!("Pool didn't panic as expected");
        }
        // If the `1` that OnScopeEnd sent occurs anywhere else than at the
        // end, that means that a worker thread was still running even
        // after the `scoped` call finished, which is unsound.
        let values: Vec<u8> = rx.into_iter().collect();
        assert_eq!(&values[..], &[0, 0, 0, 0, 0, 0, 0, 1]);
    }

    #[test]
    fn safe_execute() {
        let mut pool = Pool::new(4);
        pool.scoped(|scoped| {
            scoped.execute(move || {
            });
        });
    }
}

#[cfg(all(test, feature="nightly"))]
mod benches {
    extern crate test;

    use self::test::{Bencher, black_box};
    use super::Pool;
    use std::sync::Mutex;

    // const MS_SLEEP_PER_OP: u32 = 1;

    lazy_static! {
        static ref POOL_1: Mutex<Pool> = Mutex::new(Pool::new(1));
        static ref POOL_2: Mutex<Pool> = Mutex::new(Pool::new(2));
        static ref POOL_3: Mutex<Pool> = Mutex::new(Pool::new(3));
        static ref POOL_4: Mutex<Pool> = Mutex::new(Pool::new(4));
        static ref POOL_5: Mutex<Pool> = Mutex::new(Pool::new(5));
        static ref POOL_8: Mutex<Pool> = Mutex::new(Pool::new(8));
    }

    fn fib(n: u64) -> u64 {
        let mut prev_prev: u64 = 1;
        let mut prev = 1;
        let mut current = 1;
        for _ in 2..(n+1) {
            current = prev_prev.wrapping_add(prev);
            prev_prev = prev;
            prev = current;
        }
        current
    }

    fn threads_interleaved_n(pool: &mut Pool)  {
        let size = 1024; // 1kiB

        let mut data = vec![1u8; size];
        pool.scoped(|s| {
            for e in data.iter_mut() {
                s.execute(move || {
                    *e += fib(black_box(1000 * (*e as u64))) as u8;
                    for i in 0..10000 { black_box(i); }
                    //sleep_ms(MS_SLEEP_PER_OP);
                });
            }
        });
    }

    #[bench]
    fn threads_interleaved_1(b: &mut Bencher) {
        b.iter(|| threads_interleaved_n(&mut POOL_1.lock().unwrap()))
    }

    #[bench]
    fn threads_interleaved_2(b: &mut Bencher) {
        b.iter(|| threads_interleaved_n(&mut POOL_2.lock().unwrap()))
    }

    #[bench]
    fn threads_interleaved_4(b: &mut Bencher) {
        b.iter(|| threads_interleaved_n(&mut POOL_4.lock().unwrap()))
    }

    #[bench]
    fn threads_interleaved_8(b: &mut Bencher) {
        b.iter(|| threads_interleaved_n(&mut POOL_8.lock().unwrap()))
    }

    fn threads_chunked_n(pool: &mut Pool) {
        // Set this to 1GB and 40 to get good but slooow results
        let size = 1024 * 1024 * 10 / 4; // 10MiB
        let bb_repeat = 50;

        let n = pool.thread_count();
        let mut data = vec![0u32; size];
        pool.scoped(|s| {
            let l = (data.len() - 1) / n as usize + 1;
            for es in data.chunks_mut(l) {
                s.execute(move || {
                    if es.len() > 1 {
                        es[0] = 1;
                        es[1] = 1;
                        for i in 2..es.len() {
                            // Fibonnaci gets big fast,
                            // so just wrap around all the time
                            es[i] = black_box(es[i-1].wrapping_add(es[i-2]));
                            for i in 0..bb_repeat { black_box(i); }
                        }
                    }
                    //sleep_ms(MS_SLEEP_PER_OP);
                });
            }
        });
    }

    #[bench]
    fn threads_chunked_1(b: &mut Bencher) {
        b.iter(|| threads_chunked_n(&mut POOL_1.lock().unwrap()))
    }

    #[bench]
    fn threads_chunked_2(b: &mut Bencher) {
        b.iter(|| threads_chunked_n(&mut POOL_2.lock().unwrap()))
    }

    #[bench]
    fn threads_chunked_3(b: &mut Bencher) {
        b.iter(|| threads_chunked_n(&mut POOL_3.lock().unwrap()))
    }

    #[bench]
    fn threads_chunked_4(b: &mut Bencher) {
        b.iter(|| threads_chunked_n(&mut POOL_4.lock().unwrap()))
    }

    #[bench]
    fn threads_chunked_5(b: &mut Bencher) {
        b.iter(|| threads_chunked_n(&mut POOL_5.lock().unwrap()))
    }

    #[bench]
    fn threads_chunked_8(b: &mut Bencher) {
        b.iter(|| threads_chunked_n(&mut POOL_8.lock().unwrap()))
    }
}