1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
//! This crate provides a stable, safe and scoped threadpool.
//!
//! It can be used to execute a number of short-lived jobs in parallel
//! without the need to respawn the underlying threads.
//!
//! Jobs are runnable by borrowing the pool for a given scope, during which
//! an arbitrary number of them can be executed. These jobs can access data of
//! any lifetime outside of the pools scope, which allows working on
//! non-`'static` references in parallel.
//!
//! For safety reasons, a panic inside a worker thread will not be isolated,
//! but rather propagate to the outside of the pool.
//!
//! # Examples:
//!
//! ```rust
//! extern crate scoped_threadpool;
//! use scoped_threadpool::Pool;
//!
//! fn main() {
//! // Create a threadpool holding 4 threads
//! let mut pool = Pool::new(4);
//!
//! let mut vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
//!
//! // Use the threads as scoped threads that can
//! // reference anything outside this closure
//! pool.scoped(|scope| {
//! // Create references to each element in the vector ...
//! for e in &mut vec {
//! // ... and add 1 to it in a seperate thread
//! scope.execute(move || {
//! *e += 1;
//! });
//! }
//! });
//!
//! assert_eq!(vec, vec![1, 2, 3, 4, 5, 6, 7, 8]);
//! }
//! ```
#![cfg_attr(all(feature="nightly", test), feature(test))]
#![cfg_attr(feature="nightly", feature(drop_types_in_const))]
#![cfg_attr(all(feature="nightly", test), feature(core_intrinsics))]
#![cfg_attr(feature="nightly", feature(const_fn))]
#![cfg_attr(feature="nightly", feature(const_unsafe_cell_new))]
#![warn(missing_docs)]
#[macro_use]
#[cfg(test)]
extern crate lazy_static;
use std::thread::{self, JoinHandle};
use std::sync::mpsc::{channel, Sender, Receiver, SyncSender, sync_channel, RecvError};
use std::sync::{Arc, Mutex};
use std::marker::PhantomData;
use std::mem;
enum Message {
NewJob(Thunk<'static>),
Join,
}
trait FnBox {
fn call_box(self: Box<Self>);
}
impl<F: FnOnce()> FnBox for F {
fn call_box(self: Box<F>) {
(*self)()
}
}
type Thunk<'a> = Box<FnBox + Send + 'a>;
impl Drop for Pool {
fn drop(&mut self) {
self.job_sender = None;
}
}
/// A threadpool that acts as a handle to a number
/// of threads spawned at construction.
pub struct Pool {
threads: Vec<ThreadData>,
job_sender: Option<Sender<Message>>
}
struct ThreadData {
_thread_join_handle: JoinHandle<()>,
pool_sync_rx: Receiver<()>,
thread_sync_tx: SyncSender<()>,
}
impl Pool {
/// Construct a threadpool with the given number of threads.
/// Minimum value is `1`.
pub fn new(n: u32) -> Pool {
assert!(n >= 1);
let (job_sender, job_receiver) = channel();
let job_receiver = Arc::new(Mutex::new(job_receiver));
let mut threads = Vec::with_capacity(n as usize);
// spawn n threads, put them in waiting mode
for _ in 0..n {
let job_receiver = job_receiver.clone();
let (pool_sync_tx, pool_sync_rx) =
sync_channel::<()>(0);
let (thread_sync_tx, thread_sync_rx) =
sync_channel::<()>(0);
let thread = thread::spawn(move || {
loop {
let message = {
// Only lock jobs for the time it takes
// to get a job, not run it.
let lock = job_receiver.lock().unwrap();
lock.recv()
};
match message {
Ok(Message::NewJob(job)) => {
job.call_box();
}
Ok(Message::Join) => {
// Syncronize/Join with pool.
// This has to be a two step
// process to ensure that all threads
// finished their work before the pool
// can continue
// Wait until the pool started syncing with threads
if pool_sync_tx.send(()).is_err() {
// The pool was dropped.
break;
}
// Wait until the pool finished syncing with threads
if thread_sync_rx.recv().is_err() {
// The pool was dropped.
break;
}
}
Err(..) => {
// The pool was dropped.
break
}
}
}
});
threads.push(ThreadData {
_thread_join_handle: thread,
pool_sync_rx: pool_sync_rx,
thread_sync_tx: thread_sync_tx,
});
}
Pool {
threads: threads,
job_sender: Some(job_sender),
}
}
/// Borrows the pool and allows executing jobs on other
/// threads during that scope via the argument of the closure.
///
/// This method will block until the closure and all its jobs have
/// run to completion.
pub fn scoped<'pool, 'scope, F, R>(&'pool mut self, f: F) -> R
where F: FnOnce(&Scope<'pool, 'scope>) -> R
{
let scope = Scope {
pool: self,
_marker: PhantomData,
};
f(&scope)
}
/// Returns the number of threads inside this pool.
pub fn thread_count(&self) -> u32 {
self.threads.len() as u32
}
}
/////////////////////////////////////////////////////////////////////////////
/// Handle to the scope during which the threadpool is borrowed.
pub struct Scope<'pool, 'scope> {
pool: &'pool mut Pool,
// The 'scope needs to be invariant... it seems?
_marker: PhantomData<::std::cell::Cell<&'scope mut ()>>,
}
impl<'pool, 'scope> Scope<'pool, 'scope> {
/// Execute a job on the threadpool.
///
/// The body of the closure will be send to one of the
/// internal threads, and this method itself will not wait
/// for its completion.
pub fn execute<F>(&self, f: F) where F: FnOnce() + Send + 'scope {
self.execute_(f)
}
fn execute_<F>(&self, f: F) where F: FnOnce() + Send + 'scope {
let b = unsafe {
mem::transmute::<Thunk<'scope>, Thunk<'static>>(Box::new(f))
};
self.pool.job_sender.as_ref().unwrap().send(Message::NewJob(b)).unwrap();
}
/// Blocks until all currently queued jobs have run to completion.
pub fn join_all(&self) {
for _ in 0..self.pool.threads.len() {
self.pool.job_sender.as_ref().unwrap().send(Message::Join).unwrap();
}
// Synchronize/Join with threads
// This has to be a two step process
// to make sure _all_ threads received _one_ Join message each.
// This loop will block on every thread until it
// received and reacted to its Join message.
let mut worker_panic = false;
for thread_data in &self.pool.threads {
if let Err(RecvError) = thread_data.pool_sync_rx.recv() {
worker_panic = true;
}
}
if worker_panic {
// Now that all the threads are paused, we can safely panic
panic!("Thread pool worker panicked");
}
// Once all threads joined the jobs, send them a continue message
for thread_data in &self.pool.threads {
thread_data.thread_sync_tx.send(()).unwrap();
}
}
}
impl<'pool, 'scope> Drop for Scope<'pool, 'scope> {
fn drop(&mut self) {
self.join_all();
}
}
/////////////////////////////////////////////////////////////////////////////
#[cfg(test)]
mod tests {
#![cfg_attr(feature="nightly", allow(unused_unsafe))]
use super::Pool;
use std::thread;
use std::sync;
use std::time;
fn sleep_ms(ms: u64) {
thread::sleep(time::Duration::from_millis(ms));
}
#[test]
fn smoketest() {
let mut pool = Pool::new(4);
for i in 1..7 {
let mut vec = vec![0, 1, 2, 3, 4];
pool.scoped(|s| {
for e in vec.iter_mut() {
s.execute(move || {
*e += i;
});
}
});
let mut vec2 = vec![0, 1, 2, 3, 4];
for e in vec2.iter_mut() {
*e += i;
}
assert_eq!(vec, vec2);
}
}
#[test]
#[should_panic]
fn thread_panic() {
let mut pool = Pool::new(4);
pool.scoped(|scoped| {
scoped.execute(move || {
panic!()
});
});
}
#[test]
#[should_panic]
fn scope_panic() {
let mut pool = Pool::new(4);
pool.scoped(|_scoped| {
panic!()
});
}
#[test]
#[should_panic]
fn pool_panic() {
let _pool = Pool::new(4);
panic!()
}
#[test]
fn join_all() {
let mut pool = Pool::new(4);
let (tx_, rx) = sync::mpsc::channel();
pool.scoped(|scoped| {
let tx = tx_.clone();
scoped.execute(move || {
sleep_ms(1000);
tx.send(2).unwrap();
});
let tx = tx_.clone();
scoped.execute(move || {
tx.send(1).unwrap();
});
scoped.join_all();
let tx = tx_.clone();
scoped.execute(move || {
tx.send(3).unwrap();
});
});
assert_eq!(rx.iter().take(3).collect::<Vec<_>>(), vec![1, 2, 3]);
}
#[test]
fn join_all_with_thread_panic() {
use std::sync::mpsc::Sender;
struct OnScopeEnd(Sender<u8>);
impl Drop for OnScopeEnd {
fn drop(&mut self) {
self.0.send(1).unwrap();
sleep_ms(200);
}
}
let (tx_, rx) = sync::mpsc::channel();
// Use a thread here to handle the expected panic from the pool. Should
// be switched to use panic::recover instead when it becomes stable.
let handle = thread::spawn(move || {
let mut pool = Pool::new(8);
let _on_scope_end = OnScopeEnd(tx_.clone());
pool.scoped(|scoped| {
scoped.execute(move || {
sleep_ms(100);
panic!();
});
for _ in 1..8 {
let tx = tx_.clone();
scoped.execute(move || {
sleep_ms(200);
tx.send(0).unwrap();
});
}
});
});
if let Ok(..) = handle.join() {
panic!("Pool didn't panic as expected");
}
// If the `1` that OnScopeEnd sent occurs anywhere else than at the
// end, that means that a worker thread was still running even
// after the `scoped` call finished, which is unsound.
let values: Vec<u8> = rx.into_iter().collect();
assert_eq!(&values[..], &[0, 0, 0, 0, 0, 0, 0, 1]);
}
#[test]
fn safe_execute() {
let mut pool = Pool::new(4);
pool.scoped(|scoped| {
scoped.execute(move || {
});
});
}
}
#[cfg(all(test, feature="nightly"))]
mod benches {
extern crate test;
use self::test::{Bencher, black_box};
use super::Pool;
use std::sync::Mutex;
// const MS_SLEEP_PER_OP: u32 = 1;
lazy_static! {
static ref POOL_1: Mutex<Pool> = Mutex::new(Pool::new(1));
static ref POOL_2: Mutex<Pool> = Mutex::new(Pool::new(2));
static ref POOL_3: Mutex<Pool> = Mutex::new(Pool::new(3));
static ref POOL_4: Mutex<Pool> = Mutex::new(Pool::new(4));
static ref POOL_5: Mutex<Pool> = Mutex::new(Pool::new(5));
static ref POOL_8: Mutex<Pool> = Mutex::new(Pool::new(8));
}
fn fib(n: u64) -> u64 {
let mut prev_prev: u64 = 1;
let mut prev = 1;
let mut current = 1;
for _ in 2..(n+1) {
current = prev_prev.wrapping_add(prev);
prev_prev = prev;
prev = current;
}
current
}
fn threads_interleaved_n(pool: &mut Pool) {
let size = 1024; // 1kiB
let mut data = vec![1u8; size];
pool.scoped(|s| {
for e in data.iter_mut() {
s.execute(move || {
*e += fib(black_box(1000 * (*e as u64))) as u8;
for i in 0..10000 { black_box(i); }
//sleep_ms(MS_SLEEP_PER_OP);
});
}
});
}
#[bench]
fn threads_interleaved_1(b: &mut Bencher) {
b.iter(|| threads_interleaved_n(&mut POOL_1.lock().unwrap()))
}
#[bench]
fn threads_interleaved_2(b: &mut Bencher) {
b.iter(|| threads_interleaved_n(&mut POOL_2.lock().unwrap()))
}
#[bench]
fn threads_interleaved_4(b: &mut Bencher) {
b.iter(|| threads_interleaved_n(&mut POOL_4.lock().unwrap()))
}
#[bench]
fn threads_interleaved_8(b: &mut Bencher) {
b.iter(|| threads_interleaved_n(&mut POOL_8.lock().unwrap()))
}
fn threads_chunked_n(pool: &mut Pool) {
// Set this to 1GB and 40 to get good but slooow results
let size = 1024 * 1024 * 10 / 4; // 10MiB
let bb_repeat = 50;
let n = pool.thread_count();
let mut data = vec![0u32; size];
pool.scoped(|s| {
let l = (data.len() - 1) / n as usize + 1;
for es in data.chunks_mut(l) {
s.execute(move || {
if es.len() > 1 {
es[0] = 1;
es[1] = 1;
for i in 2..es.len() {
// Fibonnaci gets big fast,
// so just wrap around all the time
es[i] = black_box(es[i-1].wrapping_add(es[i-2]));
for i in 0..bb_repeat { black_box(i); }
}
}
//sleep_ms(MS_SLEEP_PER_OP);
});
}
});
}
#[bench]
fn threads_chunked_1(b: &mut Bencher) {
b.iter(|| threads_chunked_n(&mut POOL_1.lock().unwrap()))
}
#[bench]
fn threads_chunked_2(b: &mut Bencher) {
b.iter(|| threads_chunked_n(&mut POOL_2.lock().unwrap()))
}
#[bench]
fn threads_chunked_3(b: &mut Bencher) {
b.iter(|| threads_chunked_n(&mut POOL_3.lock().unwrap()))
}
#[bench]
fn threads_chunked_4(b: &mut Bencher) {
b.iter(|| threads_chunked_n(&mut POOL_4.lock().unwrap()))
}
#[bench]
fn threads_chunked_5(b: &mut Bencher) {
b.iter(|| threads_chunked_n(&mut POOL_5.lock().unwrap()))
}
#[bench]
fn threads_chunked_8(b: &mut Bencher) {
b.iter(|| threads_chunked_n(&mut POOL_8.lock().unwrap()))
}
}