1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
use std::error;
use std::ffi::{CStr, CString, NulError};
use std::fmt;
use std::rc::Rc;
use libc::{c_char, uint32_t};
use std::mem::transmute;
use crate::sys;
#[repr(i32)]
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub enum Error {
NoMemError = sys::SDL_errorcode::SDL_ENOMEM as i32,
ReadError = sys::SDL_errorcode::SDL_EFREAD as i32,
WriteError = sys::SDL_errorcode::SDL_EFWRITE as i32,
SeekError = sys::SDL_errorcode::SDL_EFSEEK as i32,
UnsupportedError = sys::SDL_errorcode::SDL_UNSUPPORTED as i32
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::Error::*;
match *self {
NoMemError => write!(f, "Out of memory"),
ReadError => write!(f, "Error reading from datastream"),
WriteError => write!(f, "Error writing to datastream"),
SeekError => write!(f, "Error seeking in datastream"),
UnsupportedError => write!(f, "Unknown SDL error")
}
}
}
impl error::Error for Error {
fn description(&self) -> &str {
use self::Error::*;
match *self {
NoMemError => "out of memory",
ReadError => "error reading from datastream",
WriteError => "error writing to datastream",
SeekError => "error seeking in datastream",
UnsupportedError => "unknown SDL error"
}
}
}
use std::sync::atomic::{AtomicBool};
/// Only one Sdl context can be alive at a time.
/// Set to false by default (not alive).
static IS_SDL_CONTEXT_ALIVE: AtomicBool = AtomicBool::new(false);
/// The SDL context type. Initialize with `sdl2::init()`.
///
/// From a thread-safety perspective, `Sdl` represents the main thread.
/// As such, `Sdl` is a useful type for ensuring that SDL types that can only
/// be used on the main thread are initialized that way.
///
/// For instance, `SDL_PumpEvents()` is not thread safe, and may only be
/// called on the main thread.
/// All functionality that calls `SDL_PumpEvents()` is thus put into an
/// `EventPump` type, which can only be obtained through `Sdl`.
/// This guarantees that the only way to call event-pumping functions is on
/// the main thread.
#[derive(Clone)]
pub struct Sdl {
sdldrop: Rc<SdlDrop>
}
impl Sdl {
#[inline]
fn new() -> Result<Sdl, String> {
unsafe {
use std::sync::atomic::Ordering;
// Atomically switch the `IS_SDL_CONTEXT_ALIVE` global to true
let was_alive = IS_SDL_CONTEXT_ALIVE.swap(true, Ordering::Relaxed);
if was_alive {
Err("Cannot initialize `Sdl` more than once at a time.".to_owned())
} else if sys::SDL_Init(0) == 0 {
// Initialize SDL without any explicit subsystems (flags = 0).
Ok(Sdl {
sdldrop: Rc::new(SdlDrop)
})
} else {
IS_SDL_CONTEXT_ALIVE.swap(false, Ordering::Relaxed);
Err(get_error())
}
}
}
/// Initializes the audio subsystem.
#[inline]
pub fn audio(&self) -> Result<AudioSubsystem, String> { AudioSubsystem::new(self) }
/// Initializes the event subsystem.
#[inline]
pub fn event(&self) -> Result<EventSubsystem, String> { EventSubsystem::new(self) }
/// Initializes the joystick subsystem.
#[inline]
pub fn joystick(&self) -> Result<JoystickSubsystem, String> { JoystickSubsystem::new(self) }
/// Initializes the haptic subsystem.
#[inline]
pub fn haptic(&self) -> Result<HapticSubsystem, String> { HapticSubsystem::new(self) }
/// Initializes the game controller subsystem.
#[inline]
pub fn game_controller(&self) -> Result<GameControllerSubsystem, String> { GameControllerSubsystem::new(self) }
/// Initializes the timer subsystem.
#[inline]
pub fn timer(&self) -> Result<TimerSubsystem, String> { TimerSubsystem::new(self) }
/// Initializes the video subsystem.
#[inline]
pub fn video(&self) -> Result<VideoSubsystem, String> { VideoSubsystem::new(self) }
/// Obtains the SDL event pump.
///
/// At most one `EventPump` is allowed to be alive during the program's execution.
/// If this function is called while an `EventPump` instance is alive, the function will return
/// an error.
#[inline]
pub fn event_pump(&self) -> Result<EventPump, String> {
EventPump::new(self)
}
#[inline]
#[doc(hidden)]
pub fn sdldrop(&self) -> Rc<SdlDrop> {
self.sdldrop.clone()
}
}
/// When SDL is no longer in use (the refcount in an `Rc<SdlDrop>` reaches 0), the library is quit.
#[doc(hidden)]
#[derive(Debug)]
pub struct SdlDrop;
impl Drop for SdlDrop {
#[inline]
fn drop(&mut self) {
use std::sync::atomic::Ordering;
let was_alive = IS_SDL_CONTEXT_ALIVE.swap(false, Ordering::Relaxed);
assert!(was_alive);
unsafe { sys::SDL_Quit(); }
}
}
// No subsystem can implement `Send` because the destructor, `SDL_QuitSubSystem`,
// utilizes non-atomic reference counting and should thus be called on a single thread.
// Some subsystems have functions designed to be thread-safe, such as adding a timer or accessing
// the event queue. These subsystems implement `Sync`.
macro_rules! subsystem {
($name:ident, $flag:expr) => (
impl $name {
#[inline]
fn new(sdl: &Sdl) -> Result<$name, String> {
let result = unsafe { sys::SDL_InitSubSystem($flag) };
if result == 0 {
Ok($name {
_subsystem_drop: Rc::new(SubsystemDrop {
_sdldrop: sdl.sdldrop.clone(),
flag: $flag
})
})
} else {
Err(get_error())
}
}
}
);
($name:ident, $flag:expr, nosync) => (
#[derive(Debug, Clone)]
pub struct $name {
/// Subsystems cannot be moved or (usually) used on non-main threads.
/// Luckily, Rc restricts use to the main thread.
_subsystem_drop: Rc<SubsystemDrop>
}
impl $name {
/// Obtain an SDL context.
#[inline]
pub fn sdl(&self) -> Sdl {
Sdl { sdldrop: self._subsystem_drop._sdldrop.clone() }
}
}
subsystem!($name, $flag);
);
($name:ident, $flag:expr, sync) => (
pub struct $name {
/// Subsystems cannot be moved or (usually) used on non-main threads.
/// Luckily, Rc restricts use to the main thread.
_subsystem_drop: Rc<SubsystemDrop>
}
unsafe impl Sync for $name {}
impl $name {
#[inline]
pub fn clone(&self) -> $name {
$name {
_subsystem_drop: self._subsystem_drop.clone()
}
}
/// Obtain an SDL context.
#[inline]
pub fn sdl(&self) -> Sdl {
Sdl { sdldrop: self._subsystem_drop._sdldrop.clone() }
}
}
subsystem!($name, $flag);
)
}
/// When a subsystem is no longer in use (the refcount in an `Rc<SubsystemDrop>` reaches 0),
/// the subsystem is quit.
#[derive(Debug, Clone)]
struct SubsystemDrop {
_sdldrop: Rc<SdlDrop>,
flag: uint32_t
}
impl Drop for SubsystemDrop {
#[inline]
fn drop(&mut self) {
unsafe { sys::SDL_QuitSubSystem(self.flag); }
}
}
subsystem!(AudioSubsystem, sys::SDL_INIT_AUDIO, nosync);
subsystem!(GameControllerSubsystem, sys::SDL_INIT_GAMECONTROLLER, nosync);
subsystem!(HapticSubsystem, sys::SDL_INIT_HAPTIC, nosync);
subsystem!(JoystickSubsystem, sys::SDL_INIT_JOYSTICK, nosync);
subsystem!(VideoSubsystem, sys::SDL_INIT_VIDEO, nosync);
// Timers can be added on other threads.
subsystem!(TimerSubsystem, sys::SDL_INIT_TIMER, sync);
// The event queue can be read from other threads.
subsystem!(EventSubsystem, sys::SDL_INIT_EVENTS, sync);
static mut IS_EVENT_PUMP_ALIVE: bool = false;
/// A thread-safe type that encapsulates SDL event-pumping functions.
pub struct EventPump {
_sdldrop: Rc<SdlDrop>
}
impl EventPump {
/// Obtains the SDL event pump.
#[inline]
fn new(sdl: &Sdl) -> Result<EventPump, String> {
// Called on the main SDL thread.
unsafe {
if IS_EVENT_PUMP_ALIVE {
Err("an `EventPump` instance is already alive - there can only be one `EventPump` in use at a time.".to_owned())
} else {
// Initialize the events subsystem, just in case none of the other subsystems have done it yet.
let result = sys::SDL_InitSubSystem(sys::SDL_INIT_EVENTS);
if result == 0 {
IS_EVENT_PUMP_ALIVE = true;
Ok(EventPump {
_sdldrop: sdl.sdldrop.clone()
})
} else {
Err(get_error())
}
}
}
}
}
impl Drop for EventPump {
#[inline]
fn drop(&mut self) {
// Called on the main SDL thread.
unsafe {
assert!(IS_EVENT_PUMP_ALIVE);
sys::SDL_QuitSubSystem(sys::SDL_INIT_EVENTS);
IS_EVENT_PUMP_ALIVE = false;
}
}
}
/// Get platform name
#[inline]
pub fn get_platform() -> &'static str {
unsafe {
CStr::from_ptr(sys::SDL_GetPlatform()).to_str().unwrap()
}
}
/// Initializes the SDL library.
/// This must be called before using any other SDL function.
///
/// # Example
/// ```no_run
/// let sdl_context = sdl2::init().unwrap();
/// let mut event_pump = sdl_context.event_pump().unwrap();
///
/// for event in event_pump.poll_iter() {
/// // ...
/// }
///
/// // SDL_Quit() is called here as `sdl_context` is dropped.
/// ```
#[inline]
pub fn init() -> Result<Sdl, String> { Sdl::new() }
pub fn get_error() -> String {
unsafe {
let err = sys::SDL_GetError();
CStr::from_ptr(err as *const _).to_str().unwrap().to_owned()
}
}
pub fn set_error(err: &str) -> Result<(), NulError> {
let c_string = r#try!(CString::new(err));
Ok(unsafe {
sys::SDL_SetError(c_string.as_ptr() as *const c_char);
})
}
pub fn set_error_from_code(err: Error) {
unsafe { sys::SDL_Error(transmute(err)); }
}
pub fn clear_error() {
unsafe { sys::SDL_ClearError(); }
}