1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
use std::cmp;
use std::collections::HashMap;
use std::convert::TryFrom;
use std::io::{self, Read, Seek};

use crate::{ColorType, TiffError, TiffFormatError, TiffResult, TiffUnsupportedError};

use self::ifd::Directory;
use crate::tags::{
    CompressionMethod, PhotometricInterpretation, Predictor, SampleFormat, Tag, Type,
};

use self::stream::{
    ByteOrder, DeflateReader, EndianReader, JpegReader, LZWReader, PackBitsReader, SmartReader,
};

pub mod ifd;
mod stream;

/// Result of a decoding process
#[derive(Debug)]
pub enum DecodingResult {
    /// A vector of unsigned bytes
    U8(Vec<u8>),
    /// A vector of unsigned words
    U16(Vec<u16>),
    /// A vector of 32 bit unsigned ints
    U32(Vec<u32>),
    /// A vector of 64 bit unsigned ints
    U64(Vec<u64>),
    /// A vector of 32 bit IEEE floats
    F32(Vec<f32>),
    /// A vector of 64 bit IEEE floats
    F64(Vec<f64>),
}

impl DecodingResult {
    fn new_u8(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
        if size > limits.decoding_buffer_size {
            Err(TiffError::LimitsExceeded)
        } else {
            Ok(DecodingResult::U8(vec![0; size]))
        }
    }

    fn new_u16(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
        if size > limits.decoding_buffer_size / 2 {
            Err(TiffError::LimitsExceeded)
        } else {
            Ok(DecodingResult::U16(vec![0; size]))
        }
    }

    fn new_u32(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
        if size > limits.decoding_buffer_size / 4 {
            Err(TiffError::LimitsExceeded)
        } else {
            Ok(DecodingResult::U32(vec![0; size]))
        }
    }

    fn new_u64(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
        if size > limits.decoding_buffer_size / 8 {
            Err(TiffError::LimitsExceeded)
        } else {
            Ok(DecodingResult::U64(vec![0; size]))
        }
    }

    fn new_f32(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
        if size > limits.decoding_buffer_size / std::mem::size_of::<f32>() {
            Err(TiffError::LimitsExceeded)
        } else {
            Ok(DecodingResult::F32(vec![0.0; size]))
        }
    }

    fn new_f64(size: usize, limits: &Limits) -> TiffResult<DecodingResult> {
        if size > limits.decoding_buffer_size / std::mem::size_of::<f64>() {
            Err(TiffError::LimitsExceeded)
        } else {
            Ok(DecodingResult::F64(vec![0.0; size]))
        }
    }

    pub fn as_buffer(&mut self, start: usize) -> DecodingBuffer {
        match *self {
            DecodingResult::U8(ref mut buf) => DecodingBuffer::U8(&mut buf[start..]),
            DecodingResult::U16(ref mut buf) => DecodingBuffer::U16(&mut buf[start..]),
            DecodingResult::U32(ref mut buf) => DecodingBuffer::U32(&mut buf[start..]),
            DecodingResult::U64(ref mut buf) => DecodingBuffer::U64(&mut buf[start..]),
            DecodingResult::F32(ref mut buf) => DecodingBuffer::F32(&mut buf[start..]),
            DecodingResult::F64(ref mut buf) => DecodingBuffer::F64(&mut buf[start..]),
        }
    }
}

// A buffer for image decoding
pub enum DecodingBuffer<'a> {
    /// A slice of unsigned bytes
    U8(&'a mut [u8]),
    /// A slice of unsigned words
    U16(&'a mut [u16]),
    /// A slice of 32 bit unsigned ints
    U32(&'a mut [u32]),
    /// A slice of 64 bit unsigned ints
    U64(&'a mut [u64]),
    /// A slice of 32 bit IEEE floats
    F32(&'a mut [f32]),
    /// A slice of 64 bit IEEE floats
    F64(&'a mut [f64]),
}

impl<'a> DecodingBuffer<'a> {
    fn len(&self) -> usize {
        match *self {
            DecodingBuffer::U8(ref buf) => buf.len(),
            DecodingBuffer::U16(ref buf) => buf.len(),
            DecodingBuffer::U32(ref buf) => buf.len(),
            DecodingBuffer::U64(ref buf) => buf.len(),
            DecodingBuffer::F32(ref buf) => buf.len(),
            DecodingBuffer::F64(ref buf) => buf.len(),
        }
    }

    fn byte_len(&self) -> usize {
        match *self {
            DecodingBuffer::U8(_) => 1,
            DecodingBuffer::U16(_) => 2,
            DecodingBuffer::U32(_) => 4,
            DecodingBuffer::U64(_) => 8,
            DecodingBuffer::F32(_) => 4,
            DecodingBuffer::F64(_) => 8,
        }
    }

    fn copy<'b>(&'b mut self) -> DecodingBuffer<'b>
    where
        'a: 'b,
    {
        match *self {
            DecodingBuffer::U8(ref mut buf) => DecodingBuffer::U8(buf),
            DecodingBuffer::U16(ref mut buf) => DecodingBuffer::U16(buf),
            DecodingBuffer::U32(ref mut buf) => DecodingBuffer::U32(buf),
            DecodingBuffer::U64(ref mut buf) => DecodingBuffer::U64(buf),
            DecodingBuffer::F32(ref mut buf) => DecodingBuffer::F32(buf),
            DecodingBuffer::F64(ref mut buf) => DecodingBuffer::F64(buf),
        }
    }
}

#[derive(Debug)]
struct StripDecodeState {
    strip_index: usize,
    strip_offsets: Vec<u64>,
    strip_bytes: Vec<u64>,
}

/// Decoding limits
#[derive(Clone, Debug)]
pub struct Limits {
    /// The maximum size of any `DecodingResult` in bytes, the default is
    /// 256MiB. If the entire image is decoded at once, then this will
    /// be the maximum size of the image. If it is decoded one strip at a
    /// time, this will be the maximum size of a strip.
    pub decoding_buffer_size: usize,
    /// The maximum size of any ifd value in bytes, the default is
    /// 1MiB.
    pub ifd_value_size: usize,
    /// Maximum size for intermediate buffer which may be used to limit the amount of data read per
    /// segment even if the entire image is decoded at once.
    pub intermediate_buffer_size: usize,
    /// The purpose of this is to prevent all the fields of the struct from
    /// being public, as this would make adding new fields a major version
    /// bump.
    _non_exhaustive: (),
}

impl Limits {
    /// A configuration that does not impose any limits.
    ///
    /// This is a good start if the caller only wants to impose selective limits, contrary to the
    /// default limits which allows selectively disabling limits.
    ///
    /// Note that this configuration is likely to crash on excessively large images since,
    /// naturally, the machine running the program does not have infinite memory.
    pub fn unlimited() -> Limits {
        Limits {
            decoding_buffer_size: usize::max_value(),
            ifd_value_size: usize::max_value(),
            intermediate_buffer_size: usize::max_value(),
            _non_exhaustive: (),
        }
    }
}

impl Default for Limits {
    fn default() -> Limits {
        Limits {
            decoding_buffer_size: 256 * 1024 * 1024,
            intermediate_buffer_size: 128 * 1024 * 1024,
            ifd_value_size: 1024 * 1024,
            _non_exhaustive: (),
        }
    }
}

/// The representation of a TIFF decoder
///
/// Currently does not support decoding of interlaced images
#[derive(Debug)]
pub struct Decoder<R>
where
    R: Read + Seek,
{
    reader: SmartReader<R>,
    byte_order: ByteOrder,
    bigtiff: bool,
    limits: Limits,
    next_ifd: Option<u64>,
    ifd: Option<Directory>,
    width: u32,
    height: u32,
    bits_per_sample: Vec<u8>,
    samples: u8,
    sample_format: Vec<SampleFormat>,
    photometric_interpretation: PhotometricInterpretation,
    compression_method: CompressionMethod,
    strip_decoder: Option<StripDecodeState>,
}

trait Wrapping {
    fn wrapping_add(&self, other: Self) -> Self;
}

impl Wrapping for u8 {
    fn wrapping_add(&self, other: Self) -> Self {
        u8::wrapping_add(*self, other)
    }
}

impl Wrapping for u16 {
    fn wrapping_add(&self, other: Self) -> Self {
        u16::wrapping_add(*self, other)
    }
}

impl Wrapping for u32 {
    fn wrapping_add(&self, other: Self) -> Self {
        u32::wrapping_add(*self, other)
    }
}

impl Wrapping for u64 {
    fn wrapping_add(&self, other: Self) -> Self {
        u64::wrapping_add(*self, other)
    }
}

fn rev_hpredict_nsamp<T>(image: &mut [T], size: (u32, u32), samples: usize) -> TiffResult<()>
where
    T: Copy + Wrapping,
{
    let width = usize::try_from(size.0)?;
    let height = usize::try_from(size.1)?;
    for row in 0..height {
        for col in samples..width * samples {
            let prev_pixel = image[(row * width * samples + col - samples)];
            let pixel = &mut image[(row * width * samples + col)];
            *pixel = pixel.wrapping_add(prev_pixel);
        }
    }
    Ok(())
}

fn rev_hpredict(image: DecodingBuffer, size: (u32, u32), color_type: ColorType) -> TiffResult<()> {
    let samples = match color_type {
        ColorType::Gray(8) | ColorType::Gray(16) | ColorType::Gray(32) | ColorType::Gray(64) => 1,
        ColorType::RGB(8) | ColorType::RGB(16) | ColorType::RGB(32) | ColorType::RGB(64) => 3,
        ColorType::RGBA(8)
        | ColorType::RGBA(16)
        | ColorType::RGBA(32)
        | ColorType::RGBA(64)
        | ColorType::CMYK(8)
        | ColorType::CMYK(16)
        | ColorType::CMYK(32)
        | ColorType::CMYK(64) => 4,
        _ => {
            return Err(TiffError::UnsupportedError(
                TiffUnsupportedError::HorizontalPredictor(color_type),
            ))
        }
    };
    match image {
        DecodingBuffer::U8(buf) => {
            rev_hpredict_nsamp(buf, size, samples)?;
        }
        DecodingBuffer::U16(buf) => {
            rev_hpredict_nsamp(buf, size, samples)?;
        }
        DecodingBuffer::U32(buf) => {
            rev_hpredict_nsamp(buf, size, samples)?;
        }
        DecodingBuffer::U64(buf) => {
            rev_hpredict_nsamp(buf, size, samples)?;
        }
        DecodingBuffer::F32(_buf) => {
            // FIXME: check how this is defined.
            // See issue #89.
            // rev_hpredict_nsamp(buf, size, samples)?;
            return Err(TiffError::UnsupportedError(
                TiffUnsupportedError::HorizontalPredictor(color_type),
            ));
        }
        DecodingBuffer::F64(_buf) => {
            //FIXME: check how this is defined.
            // See issue #89.
            // rev_hpredict_nsamp(buf, size, samples)?;
            return Err(TiffError::UnsupportedError(
                TiffUnsupportedError::HorizontalPredictor(color_type),
            ));
        }
    }
    Ok(())
}

impl<R: Read + Seek> Decoder<R> {
    /// Create a new decoder that decodes from the stream ```r```
    pub fn new(r: R) -> TiffResult<Decoder<R>> {
        Decoder {
            reader: SmartReader::wrap(r, ByteOrder::LittleEndian),
            byte_order: ByteOrder::LittleEndian,
            bigtiff: false,
            limits: Default::default(),
            next_ifd: None,
            ifd: None,
            width: 0,
            height: 0,
            bits_per_sample: vec![1],
            samples: 1,
            sample_format: vec![SampleFormat::Uint],
            photometric_interpretation: PhotometricInterpretation::BlackIsZero,
            compression_method: CompressionMethod::None,
            strip_decoder: None,
        }
        .init()
    }

    pub fn with_limits(mut self, limits: Limits) -> Decoder<R> {
        self.limits = limits;
        self
    }

    pub fn dimensions(&mut self) -> TiffResult<(u32, u32)> {
        Ok((self.width, self.height))
    }

    pub fn colortype(&mut self) -> TiffResult<ColorType> {
        match self.photometric_interpretation {
            PhotometricInterpretation::RGB => match self.bits_per_sample[..] {
                [r, g, b] if [r, r] == [g, b] => Ok(ColorType::RGB(r)),
                [r, g, b, a] if [r, r, r] == [g, b, a] => Ok(ColorType::RGBA(r)),
                // FIXME: We should _ignore_ other components. In particular:
                // > Beware of extra components. Some TIFF files may have more components per pixel
                // than you think. A Baseline TIFF reader must skip over them gracefully,using the
                // values of the SamplesPerPixel and BitsPerSample fields.
                // > -- TIFF 6.0 Specification, Section 7, Additional Baseline requirements.
                _ => Err(TiffError::UnsupportedError(
                    TiffUnsupportedError::InterpretationWithBits(
                        self.photometric_interpretation,
                        self.bits_per_sample.clone(),
                    ),
                )),
            },
            PhotometricInterpretation::CMYK => match self.bits_per_sample[..] {
                [c, m, y, k] if [c, c, c] == [m, y, k] => Ok(ColorType::CMYK(c)),
                _ => Err(TiffError::UnsupportedError(
                    TiffUnsupportedError::InterpretationWithBits(
                        self.photometric_interpretation,
                        self.bits_per_sample.clone(),
                    ),
                )),
            },
            PhotometricInterpretation::BlackIsZero | PhotometricInterpretation::WhiteIsZero
                if self.bits_per_sample.len() == 1 =>
            {
                Ok(ColorType::Gray(self.bits_per_sample[0]))
            }

            // TODO: this is bad we should not fail at this point
            _ => Err(TiffError::UnsupportedError(
                TiffUnsupportedError::InterpretationWithBits(
                    self.photometric_interpretation,
                    self.bits_per_sample.clone(),
                ),
            )),
        }
    }

    fn read_header(&mut self) -> TiffResult<()> {
        let mut endianess = Vec::with_capacity(2);
        self.reader.by_ref().take(2).read_to_end(&mut endianess)?;
        match &*endianess {
            b"II" => {
                self.byte_order = ByteOrder::LittleEndian;
                self.reader.byte_order = ByteOrder::LittleEndian;
            }
            b"MM" => {
                self.byte_order = ByteOrder::BigEndian;
                self.reader.byte_order = ByteOrder::BigEndian;
            }
            _ => {
                return Err(TiffError::FormatError(
                    TiffFormatError::TiffSignatureNotFound,
                ))
            }
        }
        match self.read_short()? {
            42 => self.bigtiff = false,
            43 => {
                self.bigtiff = true;
                // Read bytesize of offsets (in bigtiff it's alway 8 but provide a way to move to 16 some day)
                if self.read_short()? != 8 {
                    return Err(TiffError::FormatError(
                        TiffFormatError::TiffSignatureNotFound,
                    ));
                }
                // This constant should always be 0
                if self.read_short()? != 0 {
                    return Err(TiffError::FormatError(
                        TiffFormatError::TiffSignatureNotFound,
                    ));
                }
            }
            _ => {
                return Err(TiffError::FormatError(
                    TiffFormatError::TiffSignatureInvalid,
                ))
            }
        }
        self.next_ifd = match self.read_ifd_offset()? {
            0 => None,
            n => Some(n),
        };
        Ok(())
    }

    /// Initializes the decoder.
    pub fn init(mut self) -> TiffResult<Decoder<R>> {
        self.read_header()?;
        self.next_image()?;
        Ok(self)
    }

    /// Reads in the next image.
    /// If there is no further image in the TIFF file a format error is returned.
    /// To determine whether there are more images call `TIFFDecoder::more_images` instead.
    pub fn next_image(&mut self) -> TiffResult<()> {
        self.ifd = Some(self.read_ifd()?);
        self.width = self.get_tag_u32(Tag::ImageWidth)?;
        self.height = self.get_tag_u32(Tag::ImageLength)?;
        self.strip_decoder = None;

        self.photometric_interpretation = self
            .find_tag_unsigned(Tag::PhotometricInterpretation)?
            .and_then(PhotometricInterpretation::from_u16)
            .ok_or(TiffUnsupportedError::UnknownInterpretation)?;

        if let Some(val) = self.find_tag_unsigned(Tag::Compression)? {
            self.compression_method = CompressionMethod::from_u16(val)
                .ok_or(TiffUnsupportedError::UnknownCompressionMethod)?;
        }
        if let Some(val) = self.find_tag_unsigned(Tag::SamplesPerPixel)? {
            self.samples = val;
        }
        if let Some(vals) = self.find_tag_unsigned_vec(Tag::SampleFormat)? {
            self.sample_format = vals
                .into_iter()
                .map(SampleFormat::from_u16_exhaustive)
                .collect();

            // TODO: for now, only homogenous formats across samples are supported.
            if !self.sample_format.windows(2).all(|s| s[0] == s[1]) {
                return Err(TiffUnsupportedError::UnsupportedSampleFormat(
                    self.sample_format.clone(),
                )
                .into());
            }
        }
        match self.samples {
            1 | 3 | 4 => {
                if let Some(val) = self.find_tag_unsigned_vec(Tag::BitsPerSample)? {
                    self.bits_per_sample = val;
                }
            }
            _ => return Err(TiffUnsupportedError::UnsupportedSampleDepth(self.samples).into()),
        }

        Ok(())
    }

    /// Returns `true` if there is at least one more image available.
    pub fn more_images(&self) -> bool {
        self.next_ifd.is_some()
    }

    /// Returns the byte_order
    pub fn byte_order(&self) -> ByteOrder {
        self.byte_order
    }

    #[inline]
    pub fn read_ifd_offset(&mut self) -> Result<u64, io::Error> {
        if self.bigtiff {
            self.read_long8()
        } else {
            self.read_long().map(u64::from)
        }
    }

    /// Reads a TIFF byte value
    #[inline]
    pub fn read_byte(&mut self) -> Result<u8, io::Error> {
        let mut buf = [0; 1];
        self.reader.read_exact(&mut buf)?;
        Ok(buf[0])
    }

    /// Reads a TIFF short value
    #[inline]
    pub fn read_short(&mut self) -> Result<u16, io::Error> {
        self.reader.read_u16()
    }

    /// Reads a TIFF sshort value
    #[inline]
    pub fn read_sshort(&mut self) -> Result<i16, io::Error> {
        self.reader.read_i16()
    }

    /// Reads a TIFF long value
    #[inline]
    pub fn read_long(&mut self) -> Result<u32, io::Error> {
        self.reader.read_u32()
    }

    /// Reads a TIFF slong value
    #[inline]
    pub fn read_slong(&mut self) -> Result<i32, io::Error> {
        self.reader.read_i32()
    }

    /// Reads a TIFF float value
    #[inline]
    pub fn read_float(&mut self) -> Result<f32, io::Error> {
        self.reader.read_f32()
    }

    /// Reads a TIFF double value
    #[inline]
    pub fn read_double(&mut self) -> Result<f64, io::Error> {
        self.reader.read_f64()
    }

    #[inline]
    pub fn read_long8(&mut self) -> Result<u64, io::Error> {
        self.reader.read_u64()
    }

    /// Reads a string
    #[inline]
    pub fn read_string(&mut self, length: usize) -> TiffResult<String> {
        let mut out = vec![0; length];
        self.reader.read_exact(&mut out)?;
        // Strings may be null-terminated, so we trim anything downstream of the null byte
        if let Some(first) = out.iter().position(|&b| b == 0) {
            out.truncate(first);
        }
        Ok(String::from_utf8(out)?)
    }

    /// Reads a TIFF IFA offset/value field
    #[inline]
    pub fn read_offset(&mut self) -> TiffResult<[u8; 4]> {
        if self.bigtiff {
            return Err(TiffError::FormatError(
                TiffFormatError::InconsistentSizesEncountered,
            ));
        }
        let mut val = [0; 4];
        self.reader.read_exact(&mut val)?;
        Ok(val)
    }

    /// Reads a TIFF IFA offset/value field
    #[inline]
    pub fn read_offset_u64(&mut self) -> Result<[u8; 8], io::Error> {
        let mut val = [0; 8];
        self.reader.read_exact(&mut val)?;
        Ok(val)
    }

    /// Moves the cursor to the specified offset
    #[inline]
    pub fn goto_offset(&mut self, offset: u32) -> io::Result<()> {
        self.goto_offset_u64(offset.into())
    }

    #[inline]
    pub fn goto_offset_u64(&mut self, offset: u64) -> io::Result<()> {
        self.reader.seek(io::SeekFrom::Start(offset)).map(|_| ())
    }

    /// Reads a IFD entry.
    // An IFD entry has four fields:
    //
    // Tag   2 bytes
    // Type  2 bytes
    // Count 4 bytes
    // Value 4 bytes either a pointer the value itself
    fn read_entry(&mut self) -> TiffResult<Option<(Tag, ifd::Entry)>> {
        let tag = Tag::from_u16_exhaustive(self.read_short()?);
        let type_ = match Type::from_u16(self.read_short()?) {
            Some(t) => t,
            None => {
                // Unknown type. Skip this entry according to spec.
                self.read_long()?;
                self.read_long()?;
                return Ok(None);
            }
        };
        let entry = if self.bigtiff {
            ifd::Entry::new_u64(type_, self.read_long8()?, self.read_offset_u64()?)
        } else {
            ifd::Entry::new(type_, self.read_long()?, self.read_offset()?)
        };
        Ok(Some((tag, entry)))
    }

    /// Reads the next IFD
    fn read_ifd(&mut self) -> TiffResult<Directory> {
        let mut dir: Directory = HashMap::new();
        match self.next_ifd {
            None => {
                return Err(TiffError::FormatError(
                    TiffFormatError::ImageFileDirectoryNotFound,
                ))
            }
            Some(offset) => self.goto_offset_u64(offset)?,
        }
        let num_tags = if self.bigtiff {
            self.read_long8()?
        } else {
            self.read_short()?.into()
        };
        for _ in 0..num_tags {
            let (tag, entry) = match self.read_entry()? {
                Some(val) => val,
                None => {
                    continue;
                } // Unknown data type in tag, skip
            };
            dir.insert(tag, entry);
        }
        self.next_ifd = match self.read_ifd_offset()? {
            0 => None,
            n => Some(n),
        };
        Ok(dir)
    }

    /// Tries to retrieve a tag.
    /// Return `Ok(None)` if the tag is not present.
    pub fn find_tag(&mut self, tag: Tag) -> TiffResult<Option<ifd::Value>> {
        let entry = match self.ifd.as_ref().unwrap().get(&tag) {
            None => return Ok(None),
            Some(entry) => entry.clone(),
        };

        let limits = self.limits.clone();

        Ok(Some(entry.val(&limits, self)?))
    }

    /// Tries to retrieve a tag and convert it to the desired unsigned type.
    pub fn find_tag_unsigned<T: TryFrom<u64>>(&mut self, tag: Tag) -> TiffResult<Option<T>> {
        self.find_tag(tag)?
            .map(|v| v.into_u64())
            .transpose()?
            .map(|value| {
                T::try_from(value).map_err(|_| TiffFormatError::InvalidTagValueType(tag).into())
            })
            .transpose()
    }

    /// Tries to retrieve a vector of all a tag's values and convert them to
    /// the desired unsigned type.
    pub fn find_tag_unsigned_vec<T: TryFrom<u64>>(
        &mut self,
        tag: Tag,
    ) -> TiffResult<Option<Vec<T>>> {
        self.find_tag(tag)?
            .map(|v| v.into_u64_vec())
            .transpose()?
            .map(|v| {
                v.into_iter()
                    .map(|u| {
                        T::try_from(u).map_err(|_| TiffFormatError::InvalidTagValueType(tag).into())
                    })
                    .collect()
            })
            .transpose()
    }

    /// Tries to retrieve a tag and convert it to the desired unsigned type.
    /// Returns an error if the tag is not present.
    pub fn get_tag_unsigned<T: TryFrom<u64>>(&mut self, tag: Tag) -> TiffResult<T> {
        self.find_tag_unsigned(tag)?
            .ok_or_else(|| TiffFormatError::RequiredTagNotFound(tag).into())
    }

    /// Tries to retrieve a tag.
    /// Returns an error if the tag is not present
    pub fn get_tag(&mut self, tag: Tag) -> TiffResult<ifd::Value> {
        match self.find_tag(tag)? {
            Some(val) => Ok(val),
            None => Err(TiffError::FormatError(
                TiffFormatError::RequiredTagNotFound(tag),
            )),
        }
    }

    /// Tries to retrieve a tag and convert it to the desired type.
    pub fn get_tag_u32(&mut self, tag: Tag) -> TiffResult<u32> {
        self.get_tag(tag)?.into_u32()
    }
    pub fn get_tag_u64(&mut self, tag: Tag) -> TiffResult<u64> {
        self.get_tag(tag)?.into_u64()
    }

    /// Tries to retrieve a tag and convert it to the desired type.
    pub fn get_tag_f32(&mut self, tag: Tag) -> TiffResult<f32> {
        self.get_tag(tag)?.into_f32()
    }

    /// Tries to retrieve a tag and convert it to the desired type.
    pub fn get_tag_f64(&mut self, tag: Tag) -> TiffResult<f64> {
        self.get_tag(tag)?.into_f64()
    }

    /// Tries to retrieve a tag and convert it to the desired type.
    pub fn get_tag_u32_vec(&mut self, tag: Tag) -> TiffResult<Vec<u32>> {
        self.get_tag(tag)?.into_u32_vec()
    }

    pub fn get_tag_u16_vec(&mut self, tag: Tag) -> TiffResult<Vec<u16>> {
        self.get_tag(tag)?.into_u16_vec()
    }
    pub fn get_tag_u64_vec(&mut self, tag: Tag) -> TiffResult<Vec<u64>> {
        self.get_tag(tag)?.into_u64_vec()
    }

    /// Tries to retrieve a tag and convert it to the desired type.
    pub fn get_tag_f32_vec(&mut self, tag: Tag) -> TiffResult<Vec<f32>> {
        self.get_tag(tag)?.into_f32_vec()
    }

    /// Tries to retrieve a tag and convert it to the desired type.
    pub fn get_tag_f64_vec(&mut self, tag: Tag) -> TiffResult<Vec<f64>> {
        self.get_tag(tag)?.into_f64_vec()
    }

    /// Tries to retrieve a tag and convert it to a 8bit vector.
    pub fn get_tag_u8_vec(&mut self, tag: Tag) -> TiffResult<Vec<u8>> {
        self.get_tag(tag)?.into_u8_vec()
    }

    /// Tries to retrieve a tag and convert it to a ascii vector.
    pub fn get_tag_ascii_string(&mut self, tag: Tag) -> TiffResult<String> {
        self.get_tag(tag)?.into_string()
    }

    /// Decompresses the strip into the supplied buffer.
    /// Returns the number of bytes read.
    fn expand_strip<'a>(
        &mut self,
        buffer: DecodingBuffer<'a>,
        offset: u64,
        length: u64,
        strip_sample_count: usize,
    ) -> TiffResult<usize> {
        let color_type = self.colortype()?;
        self.goto_offset_u64(offset)?;
        let (bytes, mut reader): (usize, Box<dyn EndianReader>) = match self.compression_method {
            CompressionMethod::None => {
                let order = self.reader.byte_order;
                (
                    usize::try_from(length)?,
                    Box::new(SmartReader::wrap(&mut self.reader, order)),
                )
            }
            CompressionMethod::LZW => {
                let (bytes, reader) = LZWReader::new(
                    &mut self.reader,
                    usize::try_from(length)?,
                    strip_sample_count * buffer.byte_len(),
                )?;
                (bytes, Box::new(reader))
            }
            CompressionMethod::PackBits => {
                let order = self.reader.byte_order;
                let (bytes, reader) =
                    PackBitsReader::new(&mut self.reader, order, usize::try_from(length)?)?;
                (bytes, Box::new(reader))
            }
            CompressionMethod::OldDeflate => {
                let (bytes, reader) = DeflateReader::new(&mut self.reader, strip_sample_count)?;
                (bytes, Box::new(reader))
            }
            method => {
                return Err(TiffError::UnsupportedError(
                    TiffUnsupportedError::UnsupportedCompressionMethod(method),
                ))
            }
        };

        // FIXME: this might be suboptimal. We might default remaining bits to ยด0`, which some
        // other decoders might do.
        if bytes / buffer.byte_len() > strip_sample_count {
            return Err(TiffError::FormatError(
                TiffFormatError::UnexpectedCompressedData {
                    actual_bytes: bytes,
                    required_bytes: strip_sample_count * buffer.byte_len(),
                },
            ));
        }

        Ok(match (color_type, buffer) {
            (ColorType::RGB(8), DecodingBuffer::U8(ref mut buffer))
            | (ColorType::RGBA(8), DecodingBuffer::U8(ref mut buffer))
            | (ColorType::CMYK(8), DecodingBuffer::U8(ref mut buffer)) => {
                reader.read_exact(&mut buffer[..bytes])?;
                bytes
            }
            (ColorType::RGBA(16), DecodingBuffer::U16(ref mut buffer))
            | (ColorType::RGB(16), DecodingBuffer::U16(ref mut buffer))
            | (ColorType::CMYK(16), DecodingBuffer::U16(ref mut buffer)) => {
                reader.read_u16_into(&mut buffer[..bytes / 2])?;
                bytes / 2
            }
            (ColorType::RGBA(32), DecodingBuffer::U32(ref mut buffer))
            | (ColorType::RGB(32), DecodingBuffer::U32(ref mut buffer))
            | (ColorType::CMYK(32), DecodingBuffer::U32(ref mut buffer)) => {
                reader.read_u32_into(&mut buffer[..bytes / 4])?;
                bytes / 4
            }
            (ColorType::RGBA(32), DecodingBuffer::F32(ref mut buffer))
            | (ColorType::RGB(32), DecodingBuffer::F32(ref mut buffer))
            | (ColorType::CMYK(32), DecodingBuffer::F32(ref mut buffer)) => {
                reader.read_f32_into(&mut buffer[..bytes / 4])?;
                bytes / 4
            }
            (ColorType::RGBA(64), DecodingBuffer::F64(ref mut buffer))
            | (ColorType::RGB(64), DecodingBuffer::F64(ref mut buffer))
            | (ColorType::CMYK(64), DecodingBuffer::F64(ref mut buffer)) => {
                reader.read_f64_into(&mut buffer[..bytes / 8])?;
                bytes / 8
            }
            (ColorType::RGBA(64), DecodingBuffer::U64(ref mut buffer))
            | (ColorType::RGB(64), DecodingBuffer::U64(ref mut buffer))
            | (ColorType::CMYK(64), DecodingBuffer::U64(ref mut buffer)) => {
                reader.read_u64_into(&mut buffer[..bytes / 8])?;
                bytes / 8
            }
            (ColorType::Gray(64), DecodingBuffer::U64(ref mut buffer)) => {
                reader.read_u64_into(&mut buffer[..bytes / 8])?;
                if self.photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
                    for datum in buffer[..bytes / 8].iter_mut() {
                        *datum = 0xffff_ffff_ffff_ffff - *datum
                    }
                }
                bytes / 8
            }
            (ColorType::Gray(32), DecodingBuffer::U32(ref mut buffer)) => {
                reader.read_u32_into(&mut buffer[..bytes / 4])?;
                if self.photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
                    for datum in buffer[..bytes / 4].iter_mut() {
                        *datum = 0xffff_ffff - *datum
                    }
                }
                bytes / 4
            }
            (ColorType::Gray(16), DecodingBuffer::U16(ref mut buffer)) => {
                reader.read_u16_into(&mut buffer[..bytes / 2])?;
                if self.photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
                    for datum in buffer[..bytes / 2].iter_mut() {
                        *datum = 0xffff - *datum
                    }
                }
                bytes / 2
            }
            (ColorType::Gray(n), DecodingBuffer::U8(ref mut buffer)) if n <= 8 => {
                reader.read_exact(&mut buffer[..bytes])?;
                if self.photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
                    for byte in buffer[..bytes].iter_mut() {
                        *byte = 0xff - *byte
                    }
                }
                bytes
            }
            (ColorType::Gray(32), DecodingBuffer::F32(ref mut buffer)) => {
                reader.read_f32_into(&mut buffer[..bytes / 4])?;
                if self.photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
                    for datum in buffer[..bytes / 4].iter_mut() {
                        // FIXME: assumes [0, 1) range for floats
                        *datum = 1.0 - *datum
                    }
                }
                bytes / 4
            }
            (ColorType::Gray(64), DecodingBuffer::F64(ref mut buffer)) => {
                reader.read_f64_into(&mut buffer[..bytes / 8])?;
                if self.photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
                    for datum in buffer[..bytes / 8].iter_mut() {
                        // FIXME: assumes [0, 1) range for floats
                        *datum = 1.0 - *datum
                    }
                }
                bytes / 8
            }
            (type_, _) => {
                return Err(TiffError::UnsupportedError(
                    TiffUnsupportedError::UnsupportedColorType(type_),
                ))
            }
        })
    }

    /// Number of strips in image
    pub fn strip_count(&mut self) -> TiffResult<u32> {
        let rows_per_strip = self.get_tag_u32(Tag::RowsPerStrip).unwrap_or(self.height);

        if rows_per_strip == 0 {
            return Ok(0);
        }

        Ok((self.height + rows_per_strip - 1) / rows_per_strip)
    }

    fn initialize_strip_decoder(&mut self) -> TiffResult<()> {
        if self.strip_decoder.is_none() {
            let strip_offsets = self.get_tag_u64_vec(Tag::StripOffsets)?;
            let strip_bytes = self.get_tag_u64_vec(Tag::StripByteCounts)?;

            self.strip_decoder = Some(StripDecodeState {
                strip_index: 0,
                strip_offsets,
                strip_bytes,
            });
        }
        Ok(())
    }

    pub fn read_jpeg(&mut self) -> TiffResult<DecodingResult> {
        let offsets = self.get_tag_u32_vec(Tag::StripOffsets)?;
        let bytes = self.get_tag_u32_vec(Tag::StripByteCounts)?;

        let jpeg_tables: Option<Vec<u8>> = match self.find_tag(Tag::JPEGTables) {
            Ok(None) => None,
            Ok(_) => Some(self.get_tag_u8_vec(Tag::JPEGTables)?),
            Err(e) => return Err(e),
        };

        if offsets.len() == 0 {
            return Err(TiffError::FormatError(TiffFormatError::RequiredTagEmpty(
                Tag::StripOffsets,
            )));
        }
        if offsets.len() != bytes.len() {
            return Err(TiffError::FormatError(
                TiffFormatError::InconsistentSizesEncountered,
            ));
        }

        let mut res_img = Vec::with_capacity(offsets[0] as usize);

        for (idx, offset) in offsets.iter().enumerate() {
            if bytes[idx] as usize > self.limits.intermediate_buffer_size {
                return Err(TiffError::LimitsExceeded);
            }

            self.goto_offset(*offset)?;
            let jpeg_reader = JpegReader::new(&mut self.reader, bytes[idx], &jpeg_tables)?;
            let mut decoder = jpeg::Decoder::new(jpeg_reader);

            match decoder.decode() {
                Ok(mut val) => res_img.append(&mut val),
                Err(e) => {
                    return match e {
                        jpeg::Error::Io(io_err) => Err(TiffError::IoError(io_err)),
                        jpeg::Error::Format(fmt_err) => {
                            Err(TiffError::FormatError(TiffFormatError::Format(fmt_err)))
                        }
                        jpeg::Error::Unsupported(_) => Err(TiffError::UnsupportedError(
                            TiffUnsupportedError::UnknownInterpretation,
                        )),
                        jpeg::Error::Internal(_) => Err(TiffError::UnsupportedError(
                            TiffUnsupportedError::UnknownInterpretation,
                        )),
                    }
                }
            }
        }

        Ok(DecodingResult::U8(res_img))
    }

    pub fn read_strip_to_buffer(&mut self, mut buffer: DecodingBuffer) -> TiffResult<()> {
        self.initialize_strip_decoder()?;

        let index = self.strip_decoder.as_ref().unwrap().strip_index;
        let offset = *self
            .strip_decoder
            .as_ref()
            .unwrap()
            .strip_offsets
            .get(index)
            .ok_or(TiffError::FormatError(
                TiffFormatError::InconsistentSizesEncountered,
            ))?;
        let byte_count = *self
            .strip_decoder
            .as_ref()
            .unwrap()
            .strip_bytes
            .get(index)
            .ok_or(TiffError::FormatError(
                TiffFormatError::InconsistentSizesEncountered,
            ))?;

        let tag_rows = self.get_tag_u32(Tag::RowsPerStrip).unwrap_or(self.height);
        let rows_per_strip = usize::try_from(tag_rows)?;

        let sized_width = usize::try_from(self.width)?;
        let sized_height = usize::try_from(self.height)?;

        let strip_height = cmp::min(rows_per_strip, sized_height - index * rows_per_strip);

        let buffer_size = sized_width * strip_height * self.bits_per_sample.len();

        if buffer.len() < buffer_size {
            return Err(TiffError::FormatError(
                TiffFormatError::InconsistentSizesEncountered,
            ));
        }

        let units_read = self.expand_strip(buffer.copy(), offset, byte_count, buffer_size)?;

        self.strip_decoder.as_mut().unwrap().strip_index += 1;

        if u32::try_from(index)? == self.strip_count()? {
            self.strip_decoder = None;
        }

        if units_read < buffer_size {
            return Err(TiffError::FormatError(
                TiffFormatError::InconsistentStripSamples {
                    actual_samples: units_read,
                    required_samples: buffer_size,
                },
            ));
        }
        if let Ok(predictor) = self.get_tag_unsigned(Tag::Predictor) {
            match Predictor::from_u16(predictor) {
                Some(Predictor::None) => (),
                Some(Predictor::Horizontal) => {
                    rev_hpredict(
                        buffer.copy(),
                        (self.width, u32::try_from(strip_height)?),
                        self.colortype()?,
                    )?;
                }
                None => {
                    return Err(TiffError::FormatError(TiffFormatError::UnknownPredictor(
                        predictor,
                    )))
                }
                Some(Predictor::__NonExhaustive) => unreachable!(),
            }
        }
        Ok(())
    }

    fn result_buffer(&self, height: usize) -> TiffResult<DecodingResult> {
        let buffer_size = usize::try_from(self.width)? * height * self.bits_per_sample.len();

        let max_sample_bits = self.bits_per_sample.iter().cloned().max().unwrap_or(8);
        match self.sample_format.first().unwrap_or(&SampleFormat::Uint) {
            SampleFormat::Uint => match max_sample_bits {
                n if n <= 8 => DecodingResult::new_u8(buffer_size, &self.limits),
                n if n <= 16 => DecodingResult::new_u16(buffer_size, &self.limits),
                n if n <= 32 => DecodingResult::new_u32(buffer_size, &self.limits),
                n if n <= 64 => DecodingResult::new_u64(buffer_size, &self.limits),
                n => Err(TiffError::UnsupportedError(
                    TiffUnsupportedError::UnsupportedBitsPerChannel(n),
                )),
            },
            SampleFormat::IEEEFP => match max_sample_bits {
                32 => DecodingResult::new_f32(buffer_size, &self.limits),
                64 => DecodingResult::new_f64(buffer_size, &self.limits),
                n => Err(TiffError::UnsupportedError(
                    TiffUnsupportedError::UnsupportedBitsPerChannel(n),
                )),
            },
            format => {
                Err(TiffUnsupportedError::UnsupportedSampleFormat(vec![format.clone()]).into())
            }
        }
    }

    /// Read a single strip from the image and return it as a Vector
    pub fn read_strip(&mut self) -> TiffResult<DecodingResult> {
        self.initialize_strip_decoder()?;
        let index = self.strip_decoder.as_ref().unwrap().strip_index;

        let rows_per_strip =
            usize::try_from(self.get_tag_u32(Tag::RowsPerStrip).unwrap_or(self.height))?;

        let strip_height = cmp::min(
            rows_per_strip,
            usize::try_from(self.height)? - index * rows_per_strip,
        );

        let mut result = self.result_buffer(strip_height)?;

        self.read_strip_to_buffer(result.as_buffer(0))?;

        Ok(result)
    }

    /// Decodes the entire image and return it as a Vector
    pub fn read_image(&mut self) -> TiffResult<DecodingResult> {
        if self.compression_method == CompressionMethod::ModernJPEG {
            return self.read_jpeg();
        }

        self.initialize_strip_decoder()?;
        let rows_per_strip =
            usize::try_from(self.get_tag_u32(Tag::RowsPerStrip).unwrap_or(self.height))?;

        let samples_per_strip =
            usize::try_from(self.width)? * rows_per_strip * self.bits_per_sample.len();

        let mut result = self.result_buffer(usize::try_from(self.height)?)?;

        for i in 0..usize::try_from(self.strip_count()?)? {
            self.read_strip_to_buffer(result.as_buffer(samples_per_strip * i))?;
        }
        Ok(result)
    }
}