1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
use crate::runtime::BOX_FUTURE_THRESHOLD;
use crate::task::JoinHandle;
use std::future::Future;
cfg_rt! {
/// Spawns a new asynchronous task, returning a
/// [`JoinHandle`](super::JoinHandle) for it.
///
/// The provided future will start running in the background immediately
/// when `spawn` is called, even if you don't await the returned
/// `JoinHandle`.
///
/// Spawning a task enables the task to execute concurrently to other tasks. The
/// spawned task may execute on the current thread, or it may be sent to a
/// different thread to be executed. The specifics depend on the current
/// [`Runtime`](crate::runtime::Runtime) configuration.
///
/// It is guaranteed that spawn will not synchronously poll the task being spawned.
/// This means that calling spawn while holding a lock does not pose a risk of
/// deadlocking with the spawned task.
///
/// There is no guarantee that a spawned task will execute to completion.
/// When a runtime is shutdown, all outstanding tasks are dropped,
/// regardless of the lifecycle of that task.
///
/// This function must be called from the context of a Tokio runtime. Tasks running on
/// the Tokio runtime are always inside its context, but you can also enter the context
/// using the [`Runtime::enter`](crate::runtime::Runtime::enter()) method.
///
/// # Examples
///
/// In this example, a server is started and `spawn` is used to start a new task
/// that processes each received connection.
///
/// ```no_run
/// use tokio::net::{TcpListener, TcpStream};
///
/// use std::io;
///
/// async fn process(socket: TcpStream) {
/// // ...
/// # drop(socket);
/// }
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// let listener = TcpListener::bind("127.0.0.1:8080").await?;
///
/// loop {
/// let (socket, _) = listener.accept().await?;
///
/// tokio::spawn(async move {
/// // Process each socket concurrently.
/// process(socket).await
/// });
/// }
/// }
/// ```
///
/// To run multiple tasks in parallel and receive their results, join
/// handles can be stored in a vector.
/// ```
/// # #[tokio::main(flavor = "current_thread")] async fn main() {
/// async fn my_background_op(id: i32) -> String {
/// let s = format!("Starting background task {}.", id);
/// println!("{}", s);
/// s
/// }
///
/// let ops = vec![1, 2, 3];
/// let mut tasks = Vec::with_capacity(ops.len());
/// for op in ops {
/// // This call will make them start running in the background
/// // immediately.
/// tasks.push(tokio::spawn(my_background_op(op)));
/// }
///
/// let mut outputs = Vec::with_capacity(tasks.len());
/// for task in tasks {
/// outputs.push(task.await.unwrap());
/// }
/// println!("{:?}", outputs);
/// # }
/// ```
/// This example pushes the tasks to `outputs` in the order they were
/// started in. If you do not care about the ordering of the outputs, then
/// you can also use a [`JoinSet`].
///
/// [`JoinSet`]: struct@crate::task::JoinSet
///
/// # Panics
///
/// Panics if called from **outside** of the Tokio runtime.
///
/// # Using `!Send` values from a task
///
/// The task supplied to `spawn` must implement `Send`. However, it is
/// possible to **use** `!Send` values from the task as long as they only
/// exist between calls to `.await`.
///
/// For example, this will work:
///
/// ```
/// use tokio::task;
///
/// use std::rc::Rc;
///
/// fn use_rc(rc: Rc<()>) {
/// // Do stuff w/ rc
/// # drop(rc);
/// }
///
/// #[tokio::main]
/// async fn main() {
/// tokio::spawn(async {
/// // Force the `Rc` to stay in a scope with no `.await`
/// {
/// let rc = Rc::new(());
/// use_rc(rc.clone());
/// }
///
/// task::yield_now().await;
/// }).await.unwrap();
/// }
/// ```
///
/// This will **not** work:
///
/// ```compile_fail
/// use tokio::task;
///
/// use std::rc::Rc;
///
/// fn use_rc(rc: Rc<()>) {
/// // Do stuff w/ rc
/// # drop(rc);
/// }
///
/// #[tokio::main]
/// async fn main() {
/// tokio::spawn(async {
/// let rc = Rc::new(());
///
/// task::yield_now().await;
///
/// use_rc(rc.clone());
/// }).await.unwrap();
/// }
/// ```
///
/// Holding on to a `!Send` value across calls to `.await` will result in
/// an unfriendly compile error message similar to:
///
/// ```text
/// `[... some type ...]` cannot be sent between threads safely
/// ```
///
/// or:
///
/// ```text
/// error[E0391]: cycle detected when processing `main`
/// ```
#[track_caller]
pub fn spawn<F>(future: F) -> JoinHandle<F::Output>
where
F: Future + Send + 'static,
F::Output: Send + 'static,
{
// preventing stack overflows on debug mode, by quickly sending the
// task to the heap.
if cfg!(debug_assertions) && std::mem::size_of::<F>() > BOX_FUTURE_THRESHOLD {
spawn_inner(Box::pin(future), None)
} else {
spawn_inner(future, None)
}
}
#[track_caller]
pub(super) fn spawn_inner<T>(future: T, name: Option<&str>) -> JoinHandle<T::Output>
where
T: Future + Send + 'static,
T::Output: Send + 'static,
{
use crate::runtime::{context, task};
#[cfg(all(
tokio_unstable,
tokio_taskdump,
feature = "rt",
target_os = "linux",
any(
target_arch = "aarch64",
target_arch = "x86",
target_arch = "x86_64"
)
))]
let future = task::trace::Trace::root(future);
let id = task::Id::next();
let task = crate::util::trace::task(future, "task", name, id.as_u64());
match context::with_current(|handle| handle.spawn(task, id)) {
Ok(join_handle) => join_handle,
Err(e) => panic!("{}", e),
}
}
}