1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
use crate::loom::hint;
use core::{
    fmt,
    ops::{Deref, DerefMut},
};

macro_rules! feature {
    (
        #![$meta:meta]
        $($item:item)*
    ) => {
        $(
            #[cfg($meta)]
            $item
        )*
    }
}

macro_rules! test_trace {
    ($($tt:tt)*) => {
        #[cfg(test)]
        tracing::trace!($($tt)*)
    }
}

/// An exponential backoff for spin loops
#[derive(Debug, Clone)]
pub(crate) struct Backoff {
    exp: u8,
    max: u8,
}

pub(crate) use cache_pad::CachePadded;

/// When configured not to pad to cache alignment, just provide a no-op wrapper struct
/// This feature is useful for platforms with no data cache, such as many Cortex-M
/// targets.
#[cfg(feature = "no-cache-pad")]
mod cache_pad {
    #[derive(Clone, Copy, Default, Hash, PartialEq, Eq)]
    pub(crate) struct CachePadded<T>(pub(crate) T);
}

/// When not inhibited, determine cache alignment based on target architecture.
/// Align to 128 bytes on 64-bit x86/ARM targets, otherwise align to 64 bytes.
#[cfg(not(feature = "no-cache-pad"))]
mod cache_pad {
    #[cfg_attr(any(target_arch = "x86_64", target_arch = "aarch64"), repr(align(128)))]
    #[cfg_attr(
        not(any(target_arch = "x86_64", target_arch = "aarch64")),
        repr(align(64))
    )]
    #[derive(Clone, Copy, Default, Hash, PartialEq, Eq)]
    pub(crate) struct CachePadded<T>(pub(crate) T);
}

pub(crate) struct FmtOption<'a, T> {
    opt: Option<&'a T>,
    or_else: &'a str,
}

// === impl Backoff ===

impl Backoff {
    pub(crate) const DEFAULT_MAX_EXPONENT: u8 = 8;

    pub(crate) const fn new() -> Self {
        Self {
            exp: 0,
            max: Self::DEFAULT_MAX_EXPONENT,
        }
    }

    /// Returns a new exponential backoff with the provided max exponent.
    #[allow(dead_code)]
    pub(crate) fn with_max_exponent(max: u8) -> Self {
        assert!(max <= Self::DEFAULT_MAX_EXPONENT);
        Self { exp: 0, max }
    }

    /// Perform one spin, squarin the backoff
    #[inline(always)]
    pub(crate) fn spin(&mut self) {
        // Issue 2^exp pause instructions.
        for _ in 0..(1 << self.exp) {
            hint::spin_loop();
        }

        if self.exp < self.max {
            self.exp += 1
        }
    }
}

impl Default for Backoff {
    fn default() -> Self {
        Self::new()
    }
}

// === impl CachePadded ===

impl<T> Deref for CachePadded<T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        &self.0
    }
}

impl<T> DerefMut for CachePadded<T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        &mut self.0
    }
}

impl<T: fmt::Debug> fmt::Debug for CachePadded<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.0.fmt(f)
    }
}

// === impl FmtOption ===

impl<'a, T> FmtOption<'a, T> {
    pub(crate) fn new(opt: &'a Option<T>) -> Self {
        Self {
            opt: opt.as_ref(),
            or_else: "None",
        }
    }
}

impl<T: fmt::Debug> fmt::Debug for FmtOption<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self.opt {
            Some(val) => val.fmt(f),
            None => f.write_str(self.or_else),
        }
    }
}

impl<T: fmt::Display> fmt::Display for FmtOption<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self.opt {
            Some(val) => val.fmt(f),
            None => f.write_str(self.or_else),
        }
    }
}

#[cfg(test)]
pub(crate) fn assert_send_sync<T: Send + Sync>() {}