1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
//! Line intersection parameters.
use crate::{
geometry::{Point, PointExt},
primitives::{
common::{LineSide, LinearEquation},
Line,
},
};
/// Intersection test result.
#[derive(Copy, Clone, Debug)]
pub enum Intersection {
/// Intersection at point
Point {
/// Intersection point.
point: Point,
/// The "outer" side of the intersection, i.e. the side that has the joint's reflex angle.
///
/// For example:
///
/// ```text
/// # Left outer side:
///
/// ⎯
/// ╱
///
/// # Right outer side:
/// │
/// ╱
/// ```
///
/// This is used to find the outside edge of a corner.
outer_side: LineSide,
},
/// No intersection: lines are colinear or parallel.
Colinear,
}
/// Line intersection parameters.
#[derive(Debug, Copy, Clone)]
pub struct IntersectionParams<'a> {
line1: &'a Line,
line2: &'a Line,
le1: LinearEquation,
le2: LinearEquation,
/// Determinant, used to solve linear equations using Cramer's rule.
denominator: i32,
}
impl<'a> IntersectionParams<'a> {
pub fn from_lines(line1: &'a Line, line2: &'a Line) -> Self {
let le1 = LinearEquation::from_line(line1);
let le2 = LinearEquation::from_line(line2);
let denominator = le1.normal_vector.determinant(le2.normal_vector);
Self {
line1,
line2,
le1,
le2,
denominator,
}
}
/// Check whether two almost-colinear lines are intersecting in the wrong place due to numerical
/// innacuracies.
pub fn nearly_colinear_has_error(&self) -> bool {
self.denominator.pow(2) < self.line1.delta().dot_product(self.line2.delta())
}
/// Compute the intersection point.
pub fn intersection(&self) -> Intersection {
let Self {
denominator,
le1: line1,
le2: line2,
..
} = *self;
// The system of linear equations has no solutions if the determinant is zero. In this case,
// the lines must be colinear.
if denominator == 0 {
return Intersection::Colinear;
}
let outer_side = if denominator > 0 {
LineSide::Right
} else {
LineSide::Left
};
// If we got here, line segments intersect. Compute intersection point using method similar
// to that described here: http://paulbourke.net/geometry/pointlineplane/#i2l
// The denominator/2 is to get rounding instead of truncating.
let offset = denominator.abs() / 2;
let origin_distances = Point::new(line1.origin_distance, line2.origin_distance);
let numerator =
origin_distances.determinant(Point::new(line1.normal_vector.y, line2.normal_vector.y));
let x_numerator = if numerator < 0 {
numerator - offset
} else {
numerator + offset
};
let numerator =
Point::new(line1.normal_vector.x, line2.normal_vector.x).determinant(origin_distances);
let y_numerator = if numerator < 0 {
numerator - offset
} else {
numerator + offset
};
Intersection::Point {
point: Point::new(x_numerator, y_numerator) / denominator,
outer_side,
}
}
}